We are showing here what we have left from a post from yesterday. I was helped for this in the AOPS Forum.
The roots of the equation
$$t^3-3\sqrt{3}\cdot t^2-3\cdot t+\sqrt{3}=0 \tag{E} $$
are $\tan20^{\circ},\;\;\tan80^{\circ},\;\;\tan140^{\circ}$
Adapted Solution by CiP
$(E)\Leftrightarrow \sqrt{3}\cdot (1-3t^2)=3t-t^3 \Leftrightarrow \sqrt{3}=\frac{3t-t^3}{1-3t^2}\;\underset{t=\tan x}{=}\frac{3\cdot \tan x-\tan^3x}{1-3\cdot \tan^2x}=\tan (3x)$
so, taking the equality of the extreme terms, $3\cdot x=60^{\circ}+k\cdot 180^{\circ},\;\;k\in \mathbb{Z}$, hence $x_k=20^{\circ}+k\cdot 60^{\circ}$. Returning to the variable $t$, we have the roots
$t_1=\tan( 20^{\circ}+3k\cdot 60^{\circ})=\tan (20^{\circ}+k\cdot 180^{\circ})=\tan20^{\circ},$
$t_2=\tan(20^{\circ}+(3k+1)\cdot 60^{\circ})=\tan(80^{\circ}+k\cdot 180^{\circ})=\tan80^{\circ}$
$t_3=\tan(20^{\circ}+(3k+2)\cdot 60^{\circ})=\tan(140^{\circ}+k\cdot 180^{\circ})=\tan140^{\circ}$.
$\blacksquare$
Remark Cip Vieta's formulas for the roots of the equation (E) lead to the equalities
$\tan20^{\circ}-\tan40^{\circ}+\tan80^{\circ}=3\sqrt{3}$
$\tan20^{\circ}\cdot \tan 40^{\circ}+\tan 40^{\circ}\cdot \tan 80^{\circ}-\tan 20^{\circ}\cdot \tan 80^{\circ}=3$
$\tan20^{\circ}\cdot \tan 40^{\circ}\cdot \tan80^{\circ}=\sqrt{3}$
<end Rem>
Niciun comentariu:
Trimiteți un comentariu