The page presents the problems from the fifth onwards proposed for the 7th grade (the first four are on the previous page)
As it says on the second cover: "In grades VII-XII, the first 8 problems are intended for deepening the subject and preparing for national exams, and the last 4 are addressed to those who wish to additionally prepare for competitions".
So Problem S:E25.203 is considered easy. But still... ??In translation :
S:E25.203. The positive real numbers $a$ and $b$ verify the relation $a+b+ab=3.$
a) Verify that, if $a=2$ then $a+b>2>\sqrt{a}+\sqrt{b}.$
b) Prove that $a+b\geqslant \sqrt{a}+\sqrt{b}$, for any $a$ and $b.$
ANSWER CiP
$\textbf{b)}\;\;\; a+b\geqslant 2\geqslant \sqrt{a}+\sqrt{b} \tag{A}$.
The $"="$ sign occurs if and only if $a=b=1$
Solution CiP
a) From the given relation we obtain
$b=\frac{3-a}{1+a} \tag{1}$
and it is observed that the given numbers are within the range of values $0<a,\;b<3$.
$a=2\underset{(1)}{\Rightarrow}b=\frac{1}{3}$ and obviously $a+b>2$.
After that, we have $\sqrt{a}+\sqrt{b}=\sqrt{2}+\sqrt{\frac{1}{3}}=\frac{3\sqrt{2}+\sqrt{3}}{3}.$ But
$(\sqrt{a}+\sqrt{b})^2=\frac{(3\sqrt{2}+\sqrt{3})^2}{9}=\frac{18+3+6\sqrt{6}}{9}=\frac{7+2\sqrt{6}}{3}<4$, because of
$\sqrt{24}<\sqrt{25}\Rightarrow 2\sqrt{6}<5\Rightarrow 7+2\sqrt{6}<7+5 \Rightarrow \frac{7+2\sqrt{6}}{3}<4$.
Interestingly, we don't get a more precise result if we start with the "stronger" inequality $\sqrt{288}<\sqrt{289}$. So
$2<\frac{289}{144}\Rightarrow \sqrt{2}<\sqrt{\frac{289}{144}}=\frac{17}{12}\Rightarrow 4\sqrt{2}<\frac{17}{3}\Rightarrow 6-4\sqrt{2}>6-\frac{17}{3}=\frac{1}{3}\Rightarrow \sqrt{4-4\sqrt{2}+(\sqrt{2})^2}>\sqrt{\frac{1}{3}}\Rightarrow$
$\Rightarrow \sqrt{(2-\sqrt{2})^2}>\sqrt{\frac{1}{3}}\Rightarrow 2-\sqrt{2}>\sqrt{\frac{1}{3}} \Rightarrow 2>\sqrt{2}+\sqrt{\frac{1}{3}}$.
b) Only after numerous numerical simulations was I led to the solution of this case, by introducing the intermediate term $2$ between the two inequalities.
In the first part we use
$x+\frac{4}{x}\geqslant 4,\;for\;x>0 \tag{2}$
($\Leftrightarrow (\sqrt{x})^2-2\cdot \sqrt{x} \cdot \frac{2}{\sqrt{x}}+\left (\frac{2}{\sqrt{x}}\right )^2\geqslant 0\Leftrightarrow \left (\sqrt{x}-\frac{2}{\sqrt{x}}\right )^2\geqslant 0;\;"="\;iff\;\;x=2$)
We have
$a+b\underset{(1)}{=}a+\frac{3-a}{1+a}=(a-1)+\left ( \frac{3-a}{1+a}+1 \right )=(a-1)+\frac{4}{1+a}=$
$=\left ((1+a)+\frac{4}{1+a}\right )-2\;\overset{(2)}{\underset{with\;x=1+a}{\geqslant}}\;4-2=2$
thus left side of (A). Equal sign occurs here iff $1+a=2$ so $a=1$ and hence $b\overset{(1)}{=}\frac{3-1}{1+1}=1$.
For right side of (A), $(\sqrt{ab}-1)^2\geqslant 0\Rightarrow ab-2\sqrt{ab}+1\geqslant 0 \;\overset{ab=3-a-b}{\Rightarrow}$
$\Rightarrow 3-a-b-2\sqrt{ab}+1\geqslant 0\Rightarrow a+b+2\sqrt{ab}\leqslant 4\Rightarrow (\sqrt{a}+\sqrt{b})^2\leqslant 4$
so $\sqrt{a}+\sqrt{b}\leqslant 2$. The $"="$ sign occurs if and only if $a\cdot b=1$ which together with $a+b=3-ab=2$ give $a=b=1$.
$\blacksquare$
Niciun comentariu:
Trimiteți un comentariu