miercuri, 24 septembrie 2025

"THE TREEPENNY OPERA" : Identities with sums of three binomials // "DIE DREIGROSCHEN OPERA" : Identitäten mit Summen von drei Binomien

 Inspiration from the title of a Bertolt BRECHT play.


                  We propose to establish algebraic identities of the form :

$x^2+(x+a)^2+(x+b)^2=(x+m)^2+(x+n)^2+(x+p)^2 \tag{1}$

where  $a,\;b,\;m,\;n,\;p\;$ are real numbers.

My greatest achievement is the formula in

 

                    PROPOSITION 1.  Let  $a,\;b\;$ be given numbers. It holds 

                      the algebraic identity :

$x^2+(x+a)^2+x+b)^2=\left (x+\frac{2(a+b)}{3}\right )^2+\left (x+\frac{2b-a}{3}\right )^2+\left ( x+\frac{2a-b}{3}\right )^2 \tag{2}$

          The proof can be done by direct calculation.

$\square$

For example

$x^2+(x+1)^2+(x+5)^2=(x+4)^2+(x+3)^2+(x-1)^2$

Some choices may be unfortunate, e.g.

$x^2+(x+1)^2+(x+2)^2=(x+2)^2+(x+1)^2+x^2$

$x^2+(x+2)^2+(x+4)^2=(x+4)^2+(x+2)^2+x^2$

$x^2+(x+3)^2+(x+6)^2=(x+6)^2+(x+3)^2+x^2$

while others give us equal terms

$x^2+(x+0)^2+(x+3)^2=(x+2)^2+(x+2)^2+(x-1)^2$

$x^2+(x+3)^2+(x+0)^2=(x+2)^2+(x-1)^2+(x+2)^2$

More seriously we have

$x^2+(x-1)^2+(x+4)^2=(x+2)^2+(x+3)^2+(x-2)^2$

but putting  $x-1=y$  we have  $(y+1)^2+y^2+(y+5)^2=(y+3)^2+(y+4)^2+(y-1)^2$  which is precisely the example from the beginning.

Another                                                     $x^2+(x-2)^2+(x+5)^2=(x+2)^2+(x+4)^2+(x-3)^2$

in which if we put  $x-3=y$ , write it backwards, somehow ordering the terms

$y^2+(y+5)^2+(y+7)^2=(y+1)^2+(y+3)^2+(y+8)^2$;

if instead we put  $x-2=z$  we have, ordering now

$z^2+(z+2)^2+(z+7)^2=(z-1)^2+(z+4)^2+(z+6)^2$

and if  $z-1=t$  and write it backwards, we have

$t^2+(t+5)^2+(t+7)^2=(t+1)^2+(t+3)^2+(t+8)^2$

which is the same as the identity in  $"y"$.

Finally

$x^2+(x-1)^2+(x+7)^2=(x+4)^2+(x+5)^2+(x-3)^2$

Ordering we have

$(x-1)^2+x^2+(x+7)^2=(x-3)^2+(x+4)^2+(x+5)^2\;;$

and putting  $x-1=y$  we obtain

$y^2+(y+1)^2+(y+8)^2=(y-2)^2+(y+3)^2+(y+6)^2\;;$

putting  $x-3=z$  in the backwards we obtain

$z^2+(z+7)^2+(z+8)^2=(z+2)^2+(z+3)^2+(z+10)^2$

so we get a bunch of other identities.

          We can write it somehow "in integers" on the (2)

$x^2+(x+a)^2+(x+3c-a)^2=(x+2c)^2+(x+2c-a)^2+(x+a-c)^2 \tag{3}$

where  $a$  and  $c$  are arbitrary numbers.


          Now let's see how we got to (2).

          Identifying in (1) the coefficients of  $x^1$  and  $x^0$  we have the relations

$\begin{cases} m+n+p=a+b\\m^2+n^2+p^2=a^2+b^2\end{cases} \tag{4}$

Eliminating the unknown  $n$  we obtain

  $m^2+(a+b-m-p)^2+p^2=a^2+b^2\Leftrightarrow2m^2+(a+b)^2-2m(a+b)-2p(a+b)+2mp+2p^2=a^2+b^2$

which divided by 2 and ordered by  $p $ gives us

$p^2+p(m-a-b)+m^2-m(a+b)+ab=0 \tag{5}$

The equation (5) in the unknown  $p$  has the discriminant

 $\Delta_p=(m-a-b)^2-4[m^2-m(a+b)+ab]=(a-b)^2+2m(a+b)-3m^2$. 

Assuming that it is a perfect square

$\Delta_p=(a-b)^2+2m(a+b)-3m^3=t^2 \tag{6}$

then the roots of the equation (5) will be

$p_{1,2}=\frac{a+b-m\pm t}{2} \tag{7}$

Writing (6) as an equation in the unknown  $m$

$3m^2-2m(a+b)+t^2-(a-b)^2=0 \tag{8}$

we set the condition that its half-discriminant is a perfect square

$\Delta^{'}_m=(a+b)^2-3[t^2-(a-b)^2]=s^2$

so

$s^2+3t^2=(a+b)^2+3(a-b)^2 \tag{9}$

The values ​​of m are given by

$m_{1,2}=\frac{a+b\pm s}{2} \tag{10}$

          Choosing in (9)  $s=a+b,\;t=a-b$  we obtain

           - from (10) : $m_{1,2}=\frac{a+b \pm (a+b)}{2}\in \left \{0,\;\frac{2(a+b)}{3} \right \}$; we take the second value

           - from (7) : $p_{1,2}=\frac{a+b-\frac{2(a+b)}{3} \pm (a-b)}{2} \in \left \{\frac{2b-a}{3},\;\frac{2a-b}{3}\right \}$.

Then  $n=a+b-m-p$  take the respectively values  $\frac{2a-b}{3},\;\frac{-a+2b}{3}$.

     If  $m=\frac{2(a+b)}{3},\;p_1=\frac{2b-a}{3},\;n=\frac{2a-b}{3}$  we obtain (2). And the values  $p_2=\frac{2a-b}{3},\;n_2=\frac{-a+2b}{3}$ give us the same formula (2) with  $a$  and  $b$  swapped.

          If we notice that in (9)  the right-hand side is  $4a^2-4ab+4b^2=(2a-b)^2+3b^2$  then we can still make the choice $s=2a-b,\;t=b$  but by the end we get the same formula (2) again. More than that, since we already know a solution for the quadratic equation (9) in the unknowns  $s\; and\; t$, we can find a general solution to it depending on two parameters  $\lambda,\;\mu$:

$s=\frac{(3\mu^2-\lambda^2)(a+b)-6\lambda \mu (a-b)}{\lambda^2+3\mu^2},\;\;\;t=\frac{(\lambda^2-3\mu^2)(a-b)-2\lambda \mu (a+b)}{\lambda^2+3\mu^2}$

We are not going in this direction anymore, but what has been said so far has shown that the following Proposition takes place:

                    PROPOSITION 2.  Let  $a,\;b,\;c\;$ be given numbers. We can

                          determine, in terms of  $a,\; b,\; c$ , two numbers $?(a,b,c)$,

                          $\;??(a,b,c)$  such that

$x^2+(x+a)^2+(x+b)^2=(x+c)^2+(x+?)^2+(x+??)^2 \tag{11}$


         Indeed, from (4) we obtain the conditions

$n+p=a+b-c,\;\;n^2+p^2=a^2+b^2-c^2$

which can express  $n$  and  $p$  in terms of  $a,\;b,\;c$ :

$n,p=\frac{a+b-c \pm \sqrt{a^2+b^2-3c^2-2ab+2bc+2ac}}{2}$

Conditions in which these expressions are rational, i.e. without radicals, we leave them to the study of others who are more skilled.

              Examples :        $x^2+(x+1)^2+(x+2)^2=(x+3)^2+(x-\imath \sqrt{2})^2+(x+\imath \sqrt{2})^2$

$x^2+(x+4)^2+(x+5)^2=(x+6)^2+(x+1)^2+(x+2)^2$

$x^2+(x+7)^2+(x+8)^2=(x+9)^2+(x+3-\sqrt{7})^2+(x+3+\sqrt{7})^2$

Niciun comentariu:

Trimiteți un comentariu