marți, 16 martie 2021

PROBLEM 4611 CRUX MATHEMATICORUM , V47n02

 Page 97 - En

Page 99 - Fr

ANSWER CiP

$\frac{1}{\sin^{4}\frac{\pi}{14}}+\frac{1}{\sin^{4}\frac{3\pi}{14}}+\frac{1}{\sin^{4}\frac{5\pi}{14}}=416$

               Solution CiP

          As we showed in a previous post, the numbers

 $x_{1}=sin\frac{\pi}{14},\;x_{2}=-sin\frac{3\pi}{14},\;x_{3}=sin\frac{5\pi}{14}$

 are the roots of the polynomial $8x^{3}-4x^{2}-4x+1$. Then the numbers $y_{k}=\frac{1}{x_{k}}\;,\;k=1,\;2,\;3$ are the roots of the "reverse" equation

$y^{3}-4\cdot y^{2}-4 \cdot y+8=0 \tag{1} \label{eq1}$

 The expression to be calculated is equal to $\sum_{k=1}^{3}y_{k}^{4}$.

    We write Vieta's formulas for the equation (1)

 \begin{cases}y_{1}+y_{2}+y_{3}=4\;\;\; \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(2)\\y_{1}\cdot y_{2}+y_{2}\cdot y_{3}+y_{3} \cdot y_{1}=-4\;\;(3)\\y_{1} \cdot y_{2} \cdot y_{3}=-8 \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(4)\end{cases}

 From \eqref{eq1} we deduce $y_{k}^{3}=4\cdot y_{k}^{2}+4 \cdot y_{k}-8$ $\Rightarrow$

 $y_{k}^{4}=y_{k} \cdot y_{k}^{3}=4\cdot y_{k}^{3}+4 \cdot y_{k}^{2}-8 \cdot y_{k}=$

$=4(4y_{k}^{2}+4y_{k}-8)+4y_{k}^{2}-8y_{k}=20 y_{k}^{2}+8y_{k}-32.$

Then we get

$\sum _{k=1}^{3}y_{k}^{4}=\sum (20 \cdot y_{k}^{2}+8 \cdot y_{k}-32)=20 \cdot \sum_{k=1}^{3} y_{k}^{2}+8 \cdot \sum y_{k} -96  \overset{(2)}{=}$

$=20 \cdot [(\sum y_{k})^{2}-2 \cdot \underset{cycl}{\sum} y_{1}\cdot y_{2}]+8 \cdot 4-96\;\; \underset{(2),(3)}{==}\;\;20 \cdot [4^{2}-2(-4)]-64=416.$

$\blacksquare$

 

 Confirmare trimitere




Thank you for sending us your solution for one of the problems found
in Crux Mathematicorum.  Our file server has received your submission
and the appropriate editor will be reviewing it in sequence or as
needed.


Below is a receipt confirming the submission you sent us.



Tracking Number: 11849
Received:        Wed Mar 17 15:14:14 2021

From:  Petre Ciobanu
       Scoala Gimnaziala "Samuil Micu" SADU
       Sibiu, Romania
Email: ptr.ciobanu@gmail.com

Type:  Solve a Crux (Numbered) Problem
       (problem 4611)

Files:
  Pdf_4611.pdf
  Sursa_Latex_4611.doc


Comments:
A close problem that the idea of solving suggested to me is  Problem 28, page 115  from
E.J. BARBEAU - Polynomials (Springer-Verlag, 1989). I dedicated an article to this problem on my blog

https://ogeometrie-cip.blogspot.com/2021/02/an-equation-that-surprising-is-not.html

I also put on the blog the solution of this problem from you

https://ogeometrie-cip.blogspot.com/2021/03/problem-4611-crux-mathematicorum-v47n02.html

Crux Mathematicorum crux@cms.math.ca

17:15 (acum 1 minut)


către eu






luni, 15 martie 2021

ABOUT THE MINIMAL POLYNOMIAL OF $\cos\frac{2\pi}{n}$

 

           We will not start any personal exposure without considering what is said in WIKIPEDIA.

           While reading about Chebysev polynomials,  the following article caught my eye:

Watkins, W. and Zeitlin, J. "The Minimal Polynomial of cos(2pi/n)." Amer. Math. Monthly 100, 471-474, 1993. 

Here is a photo capture of this article