joi, 18 aprilie 2024

MY ERRATA , MY FRIEND : the most harmless math mistakes

           I like to look for mistakes in other people's works. So, I don't have time to find my own mistakes.

           I was reading a wonderful book yesterday: 

My Numbers, My Friends (Popular Lectures on Number Theory) by the author  Paulo Ribenboim.

A first mistake, more of a haste than a typo, appears on page 10 (see marked text).
In the marked place, the correct text is :

$$...\;if\;p\;is\;a\;prime\;dividing\;both\;P,\;Q,\;then...$$

$\blacksquare$

Those who wish can read as much as they want by clicking on the image of the book cover.


joi, 4 aprilie 2024

GAZETA MATEMATICĂ Seria B N0 2/2024

 Click on the image to download.


For a wider collection click here. The password for opening encrypted files is    ogeometrie

SUPLIMENTUL cu EXERCIȚII al GMB N0 2/2024

 Click on the image to download.


For a wider collection click here. The password for opening encrypted files is    ogeometrie

It is not sure if I will be able to update ERATA with each issue of the magazine

           Nu este sigur daca voi reusi actualizarea ERATA la fiecare numar al revistei.



luni, 18 martie 2024

Тэнцүү нийлбэр бүхий хуваалтууд // Partitions with equal sums


           For which values of $n$ can the set $\{1,2,...,n\}$ be partitioned into three sets with the same sums of elements ?

       E.g $\{1,2,3,4,5\}=\{1,4\}\cup \{2,3\}\cup \{5\}$ ;

             $\{1,2,3,4,5,6\}=\{1,6\}\cup \{2,5\} \cup \{3,4\}.$


          The following is one of the old contest problems (22nd All Soviet Union Math Contest, 1988).

          Let $m,\; n,\; k$ be positive integers with $m \geqslant n$ and $1+2+\cdots +n=m\cdot k$. Prove that the numbers $1,\;2,\;\cdots,n$ can be divided into $k$ groups in such a way that the sum of the numbers in each group equals $m$.

          CiP example: $1+2+3+4+5+6+7+8+9=45$; 

          from $45=9\cdot 5$ the partition of $k=5$ groups is obtained, each with a sum of $m=9$

$$\{1,\;8\}\cup \{2,\;7\}\cup\{3,\;6\}\cup \{4,\;5\}\cup\{9\};$$

          from $45=15 \cdot 3$ the partition of $k=3$ goups is obtained, each with a sum of $m=15$.

$$\{1,\;2,\;3,\;9\} \cup \{4,\;5,\;6\} \cup \{7,\;8\}.$$

          CiP exampl$e^{bis}$: $1+2+3+4+5+6+7+8=36=12 \cdot 3$ and we have the partition of $k=3$ subsets, with the sum of  $m=12$

$$\{1,\;2,\;3,\;6\} \cup \{4,\;8\} \cup \{5,\;7\}.$$

 

          It would seem that the answer to the original question is $n=3\cdot p-1$ or $n=3\cdot p$. That is, in the case of $n=3\cdot p+1$, there is no such partition. (Indeed, if $n=3\cdot p+1$, then, because  $$1+2+ \cdots +n=\frac{n(n+1)}{2}=\frac{(3p+1)(3p+2)}{2}=9\cdot \frac{p(p+1)}{2}+1,$$ this sum should be a multiple of 3, which is not true.)

   If $n=3p$ then $1+2+ \cdots +n=\frac{3p(3p+1)}{2}=3 \cdot \frac{p(3p+1)}{2}=3\cdot \frac{p(p+1+2p)}{2}=3\cdot m$,

 and $p$ or $p+1$ is divisible by $2$ so $m$ is integer.

   If $n=3p-1$ then $\frac{n(n+1)}{2}=\frac{(3p-1) p}{2}=\frac {(2p+p-1)\cdot p}{2}=3 \cdot m$

with $m$ integer by the same arguments.

     So in these cases we fall over the general problem given to the 22nd All Soviet Union Math Contest, 1988.


          Another example in the case of $n=15$ is here : math.stackexchange.com/questions/31929/partition-of-equal-size-and-equal-sum

          The proof is given by induction, resulting in a way of constructing the partitions.


            The general problem has an object if $n \geqslant 3$.

          For $n=3$ we have only one partition $\{1,\;2\} \cup \{3\}.$

         For $n=4$ such partitions do not exsist.

         For $n=5,\;6$ are just the examples presented previously.

         For $n=7$ such partitions do not exist.

         For $n=8$, because $1+2+\cdots +8=36=9 \cdot 4=12 \cdot 3=18 \cdot 2$ we have in addition to the presented previously and the partitions

$$\{1,\;2,\;3,\;4,\;8\}\cup \{5,\;6,\;7\},\;\{1,\;3,\;6,\;8\}\cup \{2,\;4,\;5,\;7\}$$

$$\{1,\;4,\;5,\;8\}\cup \{2,\;3,\;6,\;7\}\;,\;\{1,\;4,\;6,\;7\}\cup \{2,\;3,\;5,\;8\}$$

$$\{1,\;2,\;4,\;5,\;6\}\cup \{3,\;7,\;8\}\;,\;\{1,\;2,\;3,\;5,\;7\} \cup \{4,\;6,\;8\}$$

$$\{1,\;2,\;7,\;8\}\cup \{3,\;4,\;5,\;6\}.$$

         For $n=9$, because $1+2+\cdots+9=45=9\cdot 5=15 \cdot 3$ are just the examples presented previously.


 


miercuri, 28 februarie 2024

marți, 27 februarie 2024

SUPLIMENTUL cu EXERCIȚII al GMB N0 1/2024

           Click on the image to download.

For a wider collection click here. The password for opening encrypted files is    ogeometrie

luni, 26 februarie 2024

Identities for some $\frac{k\pi}{7}$ and $\frac{k\pi}{14}$ angles

           The problem has been discussed here before. 

          I showed that $\left \{ cos\frac{\pi}{7},\;-cos\frac{2\pi}{7},\;cos\frac{3\pi}{7} \right \}=\left \{ sin\frac{5\pi}{14},\; -sin \frac{3\pi}{14},\; \sin\frac{\pi}{14} \right \}$ 

are the roots of the equation  $8x^3-4x^2-4x+1=0$ (see Remark 2, relations (5)-(8) ). And identities are expressions of  Vieta's relationships for this equation.

          For 3.i), let $A=cos\frac{\pi}{7}-cos \frac{2\pi}{7}+cos \frac{3\pi}{7}$. 

Let's calculate  $2sin\frac{\pi}{7} \cdot A=2sin\frac{\pi}{7}\cdot cos\frac{\pi}{7}-2sin\frac{\pi}{7}\cdot cos \frac{2\pi}{7}+2sin \frac{\pi}{7}\cdot cos \frac{5\pi}{7};$

with the formula of the double angle and the sum product formulas we get

$$2sin\frac{\pi}{7} \cdot A= sin\frac{2\pi}{7}-\left (sin \frac{3\pi}{7}-sin\frac{\pi}{7} \right )+ \left ( sin \frac{4\pi}{7}-sin\frac{2\pi}{7} \right ).$$

But the angles $\frac{4\pi}{7}$ and $\frac{3\pi}{7}$ are supplementary, so $sin \frac{4\pi}{7}=sin\frac{3\pi}{7}$, and we get $2sin\frac{\pi}{7} \cdot A= sin\frac{\pi}{7}$ from which 3.i) results.

          For 3.ii), let's note that $\frac{\pi}{2}-\frac{\pi}{7}=\frac{5\pi}{14},\;\frac {\pi}{2}-\frac{2\pi}{7}=\frac{3\pi}{14},\;\frac{\pi}{2}-\frac{3\pi}{7}=\frac{\pi}{14}$ 

and with the complement formula this is obtained from 3.i).

          For 3.iii), let $B=8\cdot cos\frac{\pi}{7}\cdot cos\frac{2\pi}{7} \cdot cos \frac{3\pi}{7}.$

 We will calculate $sin\frac{\pi}{7}\cdot B$ applying several times the formula of the double angle and the formulas of the supplements.

$$sin\frac{\pi}{7}\cdot B=4\cdot \left ( 2sin \frac{\pi}{7} \cdot cos\frac{\pi}{7}\right )\cdot cos\frac{2\pi}{7}\cdot cos\frac{3\pi}{7}=4\cdot sin\frac{2\pi}{7}\cdot cos \frac{2\pi}{7} \cdot cos \frac{3\pi}{7}=$$

$$=2\cdot \left ( 2 \cdot sin\frac{2\pi}{7}\cdot cos \frac{2\pi}{7} \right ) \cdot cos \frac{3\pi}{7}=2\cdot sin\frac{4\pi}{7}\cdot cos\frac{3\pi}{7}=2\cdot sin\frac{3\pi}{7}\cdot cos \frac{3\pi}{7}=$$

$$=sin\frac{6\pi}{7}=sin\frac{\pi}{7}$$

hence $B=1.$

          Now 3.iv) is obtained from 3.iii) with complement's formulae.

$\blacksquare$



joi, 22 februarie 2024

GAZETA MATEMATICĂ Seria B N0 1/2024

 Click on the image to download.



For a wider collection click here. The password for opening encrypted files is    ogeometrie

miercuri, 21 februarie 2024

En trigonometrisk identitet af Euklid // A Trigonometric Identity of Euclid

 (Daneză)

          An identity of Euclid

edit

Euclid showed in Book XIII, Proposition 10 of his Elements that the area of the square on the side of a regular pentagon inscribed in a circle is equal to the sum of the areas of the squares on the sides of the regular hexagon and the regular decagon inscribed in the same circle. In the language of modern trigonometry, this says:

{\displaystyle \sin ^{2}18^{\circ }+\sin ^{2}30^{\circ }=\sin ^{2}36^{\circ }.}

Ptolemy used this proposition to compute some angles in his table of chords in Book I, chapter 11 of Almagest.


          Solution 1 CiP

          We know the values $$sin 18^\circ=\frac{\sqrt{5}-1}{4},\;sin 30^\circ=\frac{1}{2},\;sin 36^\circ=\frac{\sqrt{10-2\sqrt{5}}}{4}.$$ 

The calculation is simple: $sin^2 18^\circ +sin^2 30^\circ =\left (\frac{\sqrt{5}-1}{4} \right )^2+\left (\frac{1}{2} \right )^2=\frac{5-2\sqrt{5}+1}{16}+\frac{1}{4}=\frac{6-2\sqrt{5}+4}{16}=\frac{10-2\sqrt{5}}{16}=sin^2 36^\circ .$

$\blacksquare$


          Solution 2 CiP

          First we show that

$cos 36^\circ -cos 72^\circ=\frac{1}{2}. \tag{1}$

For this, we denote $A:=cos 36^\circ -cos 72^\circ.$ We will calculate, with double-angle formula and product-to-sum identity

$$2sin 36^\circ \cdot A=2sin 36^\circ \cdot cos 36^\circ-2sin 36^\circ \cdot cos 72^\circ=sin (2\cdot 36^\circ)-(sin 108^\circ-sin36^\circ)=$$

$$=(sin 72^\circ-sin 108^\circ)+sin 36^\circ=sin 36^\circ,$$

(because of reflection in $90^\circ$ formulae, $sin108^\circ=sin(180^\circ-108^\circ)=sin 72^\circ)$, hence (1) follow.

     Now we calculate with power-reduction formula

$sin^2 36^\circ-sin^2 18^\circ=\frac{1-cos (2\cdot 36^\circ)}{2}-\frac{1-cos(2\cdot 18^\circ)}{2}=\frac{1}{2}(cos 36^\circ-cos 72^\circ)\;\underset{(1)}{==}\;\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4}=sin^2 30^\circ.$

$\blacksquare$

          Remark CiP We also know $cos 36^\circ =\frac{\sqrt{5}+1}{4},\;cos 72^\circ =\frac {\sqrt{5}-1}{4}$ and (1) results easier.

<End Rem>


marți, 20 februarie 2024

Barycentric coordinate on the Straight Line

          Let $A$ and $B$ be distinct points. 

     LEMMA  The following statements are equivalent:
                  (i) points $\;X,\;A,\;B\;$ are collinear and $\frac{\overline{XA}}{\overline{XB}}=\kappa$;
                 (ii) $\overrightarrow{OX}=\frac{\overrightarrow{OA}-\kappa \cdot \overrightarrow{OB}}{1-\kappa}$ for a certain point $O$;
                (iii)  $\overrightarrow{OX}=\frac{\overrightarrow{OA}-\kappa \cdot \overrightarrow{OB}}{1-\kappa}$ for any point $O$.


     Corollary  The following statements are equivalent:
          ($\alpha$)  points $\;X,\;A,\;B\;$ are collinear and $\frac{\overline{AX}}{\overline{AB}}=r$;
          ($\beta$)  $\overrightarrow{OX}=(1-r)\cdot \overrightarrow{OA}+r \cdot \overrightarrow{OB}$ for a certain/any point $O$.
 
     Remark  The formula from point ($\beta$) is still writte
$$X=(1-r)\cdot A+r \cdot B.$$

          Proof CiP

          (i)$\Rightarrow$(iii) As oriented segments, we have $\frac{\overline{XA}}{\overline{XB}}=\kappa\;\Rightarrow\;\overrightarrow{XA}=\kappa \cdot \overrightarrow{XB}\;\Rightarrow$

$$\Rightarrow\;\overrightarrow{OA}-\overrightarrow{OX}=\kappa(\overrightarrow{OB}-\overrightarrow{OX})\;\Rightarrow\;(1-\kappa)\overrightarrow{OX}=\overrightarrow{OA}-\kappa \cdot \overrightarrow{OB}$$

where $O$ is an arbitrary point. We get the conclusion.

          (ii)$\Rightarrow$(i) $(1-\kappa)\overrightarrow{OX}=\overrightarrow{OA}-\kappa \cdot \overrightarrow{OB}\;\Rightarrow\;\overrightarrow{OA}-\overrightarrow{OX}=\kappa (\overrightarrow{OB}-\overrightarrow{OX}\;\Rightarrow\;\overrightarrow{XA}=\kappa \cdot \overrightarrow{XB}$

so the vectors $\overrightarrow{XA}$ and $\overrightarrow{XB}$ are collinear and their orientation is according to the sign of $\kappa$, as the figure shows. Hence $\overline {XA}=\kappa \cdot \overline{XB}$.

          (iii)$\rightarrow$(ii)  obvious.

     The Lemma is proved. To prove the corollary we note that

$$\overrightarrow{XA}=\kappa \cdot \overrightarrow{XB}\;\Leftrightarrow\;\overrightarrow{AX}=-\kappa \cdot \overrightarrow{XB}=-\kappa(\overrightarrow{AB}-\overrightarrow{AX})\;\Leftrightarrow \;(1-\kappa)\overrightarrow{AX}=-\kappa \cdot \overrightarrow{AB}$$

hence $r=-\frac{\kappa}{1-\kappa}$.

$\blacksquare \blacksquare$





joi, 8 februarie 2024

Was kann eine Maschine lernen und ein Mensch nicht?

                A young researcher thinks he has made a great discovery. A prestigious journal even published his research. Here are the links to the two articles:

https://www.researchgate.net/publication/334837030_Lecture_Notes_on_Machine_Learning_Maximum_Product_of_Numbers_of_Constant_Sum 

https://www.researchgate.net/publication/334848381_Lecture_Notes_on_Machine_Learning_Minimum_Sum_of_Numbers_of_Constant_Product


Unfortunately, neither the mentor of this young researcher nor the Referent of these articles noticed that the two theorems have been known for a long time. Some would say that they are consequences of the inequality of the arithmetic and geometric means. But I say that the inequality precedes the notion of a radical of order $n$.

            For these the inequality
$$\left ( \frac{a_1+a_2+\cdots +a_n}{n} \right )^n \geqslant a_1\cdot a_2 \cdots a_n$$
is sufficient, which I think, at least in the case of $n=2$, was known since the time of Euclid.

          Therefore, man still needs to learn, so that the machine does not overtake him !!

vineri, 2 februarie 2024

The Problem "S:L23.322" and probably its neighbors

             

    It is page 9 of the "SUPLIMENTUL cu EXERCIȚII al GMB N0 12/2023".


          In translation
               "S:L23.322.    Show that if  $\;a,\;b,\;c\in (0,\;\infty)$  and  $a+b+c=1$, then

$$\frac{a+1}{\sqrt{a+bc}}\geqslant 2."$$

           Solution CiP 

           We have the known inequality 

$\frac{x+y}{\sqrt{xy}}\geqslant 2 \tag{1}$

where $x,\;y$ are positive real numbers. The sign $"="$ occurs in (1) if and only if $x=y.$

(The deduction of (1) is immediate from the equivalents

$$(\sqrt{x}-\sqrt{y})^2 \geqslant 0\;\Leftrightarrow\;x-2\sqrt{x}\cdot \sqrt{y}+y \geqslant 0\;\Leftrightarrow\;x+y\geqslant 2\sqrt{xy}\;\Leftrightarrow\;(1)\;)$$

          Back to the problem, it results from the given conditions that $\;a,b,c<1$ (because, for example $a=1-b-c<1-0-0$ and $-b,-c<0$).

Then the numbers  $x=1-b$  and  $y=1-c$  are positive. But we have
$$a+1=1-b-c+1=(1-b)+(1-c)=x+y$$

and

$$a+bc=1-b-c+bc=(1-b)(1-c)=xy$$

and then the inequality (1) expresses exactly what the statement requires.

$\blacksquare$

          Remark CiP  The statement does not ask when the $"="$ sign occurs. We will answer, as a bonus.

The sign $"="$ occurs if and only if $(a,b,c)=(1-2t,t,t)$ with  $t\in (0, \frac{1}{2}).$ 

Even the values $t=0$ (when $a=1,\;b=c=0$) and $t=\frac{1}{2}$ (when $a=0,\;b=c=\frac{1}{2}$) are admissible for the statement.

<end Rem>


..................................................................................................................................

          As Mr. Konstantine ZELATOR used to us, a problem never appears alone. I am referring to his  posts related to problems in the Crux Mathematicorum magazine (although he also has concerns about UFO-logy). As I announced in the title, we will also try to solve the other problems on the photographed page.

 

              " S:L23.321.  Let $ABCD$ be the convex quadrilateral whose diagonals 

          intersect at $O$. If $\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{AO}=\overrightarrow{BC}+\overrightarrow{DC}+\overrightarrow{OC}$, show that $ABCD$

          is a parallelogram."

                  Solution CiP

          It seems that no figure would be needed.

I did one, with a trembling hand.

          The relationship given between the six vectors is written, replacing some of them with the sum of two others, in the form

$(\overrightarrow{AO}+\overrightarrow{OB})+(\overrightarrow{AO}+\overrightarrow{OD})+\overrightarrow{AO}=(\overrightarrow{BO}+\overrightarrow{OC})+(\overrightarrow{DO}+\overrightarrow{OC})+\overrightarrow{OC}\;\Leftrightarrow$

$\Leftrightarrow\;3\overrightarrow{AO}+\overrightarrow{OB}+\overrightarrow{OD}=\overrightarrow{BO}+3\overrightarrow{OC}+\overrightarrow{DO}\;\Leftrightarrow$

$\Leftrightarrow \;3(\overrightarrow{AO}-\overrightarrow{OC})=2\overrightarrow{BO}+2\overrightarrow{DO}\;\Leftrightarrow\;$

$\Leftrightarrow\;3(\overrightarrow{AO}+\overrightarrow{CO})=2(\overrightarrow{BO}+\overrightarrow{DO}).\;\tag{1}$

     On the left side of the relation (1) we have a sum of two vectors  collinear with $\overrightarrow{AC}$, so the result will also be a vector collinear with $\overrightarrow{AC}$. On the right side of the relation (1) we have a sum of two  vectors collinear with $\overrightarrow{BD}$, so the result will also be a vector collinear with $\overrightarrow{BD}$. Thus, equality (1) is possible only if

$$\overrightarrow{AO}+\overrightarrow{CO}=\overrightarrow{0}=\overrightarrow{BO}+\overrightarrow{DO}\;\Leftrightarrow$$

$\Leftrightarrow\;\overrightarrow{AO}=-\overrightarrow{CO}=\overrightarrow{OC}$ and $\overrightarrow{BO}=-\overrightarrow{DO}=\overrightarrow{OD}.$ But this means that point $O$ is both the midpoint of segment $[AC]$ and the midpoint of $[BD]$, thus $ABCD$ is a parallelogram.

$\blacksquare$





sâmbătă, 27 ianuarie 2024

MAXIMA and MINIMA Without CALCULUS

 

          I saw, flipping through a list of problems for the Mathematics Olympiad for Juniors, the following question:

"If   $0<x<1$   prove that   $x-x^3\;<\frac{1}{2}$."

           I would be curious what the simplest solution would be. I had another post like this here. And I mean a solution that does not call for advanced mathematical knowledge, for example Calculus.


          Anyone with even a little Calculus experience realizes that the statement of the problem hides an insufficiency: does the expression $x-x^3$ have a maximum or a minimum on the interval $0<x<1$ ?; and what are the values of  $x$ that achieve them ?

     Following this line, Calculus teaches us to find out the largest and smallest value taken by the function

$$f\;:\;[0;1]\rightarrow \mathbb{R},\;\;f(x)=x-x^3$$

(or the extension of this function to the entire real axis $-\infty <x<+\infty$).

     The derivative ${f}'=1-3x^2$ has critical (stationary) points $x_\pm=\pm \frac{1}{\sqrt{3}}$.


As can be seen from the Variation Table of the Function, at $x_-$ we have a local minimum, and at $x_+$ - a local maximum. The conclusion of this study is that

If $0<x<1$ then $x-x^3 \leqslant \frac{2}{3\sqrt{3}}. \;\;\;\;\;(1)$ 

Equality occur at $x_+=\frac{1}{\sqrt{3}}$.

Remark CiP  Before I had time to complete the Variation Table of the function, Mr. George Stoica already posted his comment with an elementary solution to both the initial version (obtaining a slight strengthening) and a solution to the "optimal" version (1).

<end Rem>


          The title of the post is inspired by the similar title of a book, we could call it famous, by Ivan NIVEN, (The MATHEMATICAL ASSOCIATION of AMERICA, 1981). Even after decades, this book is still quoted with interest; see Berkeley Math Circle : Tom Rike, Maxima and Minima Problems WITHOUT Calculus, 2002

          We will give a demonstration based on the maximum product principle. It is stated as follows

          If the sum of $n$ non-negative real numbers is constant, then their

          product is maximum when the numbers are equal.

          Let be the product of three factors $P=x\cdot (1-x) \cdot (1+x).$

The sum of the three factors is $x+(1-x)+(1+x)=2+x$. Unfortunately, it is not constant, so we will resort to a "trick". We consider the product

$$P_1=(\sqrt{3}+1)(2+\sqrt{3}) \cdot P=$$

$$=[(\sqrt{3}+1)x]\cdot [(2+\sqrt{3})(1-x)] \cdot [1+x].$$

The sum of the three factors is now 

$[x\sqrt{3}+x]+[2+\sqrt{3}-2x-x\sqrt{3}]+[1+x]=3+\sqrt{3}$

 and is now a constant. So the maximum of $P_1$ occurs when

$$(\sqrt{3}+1)x=(2+\sqrt{3})(1-x)=1+x.$$

But the three conditions above are satisfied exactly when $x=\frac{1}{\sqrt{3}}.$

Now, $P_1$ and $P$ differ by a positive factor, so they are maximum at the same time.

$\blacksquare$

       Things don't end there. Some might say that this solution is like pulling a rabbit out of a hat. I applied a method known in the French mathematical literature as belonging to M. Grillet. Unfortunately, in the "Éléments d'algèbre, à l'usage des candidats au baccalauréat ès sciences et aux écoles spéciales" par Eugène Rouché (Paris, MALLET-BACHELIER , IMPRIMEUR-LIBRAIRE, 1857) on page 181, only the Nouvelles Annales are mentioned, without any other specification.

        We start by finding three numbers  $\alpha,\;\beta,\;\gamma\;$ so that the product

$$P_1=\alpha \cdot \beta \cdot \gamma \cdot P=[\alpha \cdot x]\cdot [\beta \dot (1-x)] \cdot [\gamma \cdot (1+x)]$$

 has a constant sum of factorsThe sum of these factors is

$$(\alpha x)+(\beta-\beta x)+(\gamma +\gamma x)=(\alpha -\beta+\gamma)\cdot x+(\beta+\gamma).$$

If we choose $\alpha -\beta +\gamma =0$, then $\alpha = \beta-\gamma$ and

$$P_1=[(\beta-\gamma)x]\cdot [\beta(1-x)]\cdot [\gamma(1+x)]$$

has a constant sum of factors. $P_1$ is maximum for

$$(\beta-\gamma) \cdot x =\beta-\beta\cdot x=\gamma+\gamma \cdot x .\tag{2}$$

From the first equality we get $x=\frac{\beta}{2\beta-\gamma}$ and from the second equality we get $x=\frac{\beta-\gamma}{\beta+\gamma}.$ In order for relations (2) to be compatible, we must have

$$\frac{\beta-\gamma}{\beta+\gamma}=\frac{\beta}{2\beta-\gamma}\;\Leftrightarrow\;\beta^2-4\beta \gamma+\gamma^2=0.$$

We choose $\frac{\beta}{\gamma}>1$ to have $\beta-\gamma >0$, so $\frac{\beta}{\gamma}=2+\sqrt{3}.$ In our trick we took $\gamma=1,\;\beta=2+\sqrt{3},\;\alpha=1+\sqrt{3}.$

(Remark. In the case of more than three variables, conditions like those in (2) lead to equations of degree higher than 2, so they are more difficult to handle.)


!! Finally, I found exactly. Grillet, H. Méthode élémentaire pour résoudre quelques questions sur les maximums. Nouvelles annales de mathématiques : journal des candidats aux écoles polytechnique et normale, Serie 1, Volume 9 (1850), pp. 70-73.