vineri, 2 decembrie 2022

Problem 28423 from GMB 10/2022

            The problem is proposed for the 9th grade, on page 483.

In translation, thanks to Miss Google:
          "Show that the equation $x^{n+1}+y^n=z^n$ has an infinity of solutions in the set of nonzero natural numbers, for any natural number $n \geqslant 2$."

ANSWER CiP
$$x=\frac{(k^{n+1}+1)^n-1}{k^n},\;\;y=\frac{(k^{n+1}+1)^n-1}{k^{n+1}},\;\;z=\frac{(k^{n+1}+1)^{n+1}-k^{n+1}-1}{k^{n+1}}$$
represent solutions of the given equation, for $k \in \mathbb{N}\setminus \{0\}.$

                    Solution CiP

               Let us first show that the values given in the Answer are solutions of the equation.
          Let $l \underset{def}{=} k^{n+1}+1.$ Then $x=\frac{l^n-1}{k^n},\;y=\frac{l^n-1}{k^{n+1}},\;z=\frac{l^{n+1}-l}{k^{n+1}}$ and we have
$$x^{n+1}+y^n=\frac{(l^n-1)^{n+1}}{k^{n(n+1)}}+\frac{(l^n-1)^n}{k^{(n+1)n}}=$$ 
$=\frac{(l^n-1)^n}{k^{(n+1)n}}\cdot [(l^n-1)+1]=\frac{(l^n-1)^n \cdot l^n}{k^{(n+1)n}}=\left ( \frac{l(l^n-1)}{k^{n+1}} \right )^n=\left ( \frac{l^{n+1}-l}{k^{n+1}} \right ) ^n\;=\;\;z^n.$
          We found the expressions in the answer by trying to find solutions of the given equation with $x=ky,\;k \in \mathbb{N} \setminus \{ 0 \}.$ We have
 $$x^{n+1}+y^n=k^{n+1} \cdot y^{n+1}+y^n=y^n(k^{n+1} \cdot y+1).$$ 

For the above result to be a power of $n$ we must have $k^{n+1}y+1=l^n$ for some integer $l$, so $y=\frac{l^n-1}{k^{n+1}}.$ For $y$ to be an integer, it is enough to choose $l=k^{n+1}+1$ because according to the binomial theorem we have

$l^n-1=(k^{n+1}+1)^n-1=\sum_{i=0}^n \textrm{C}_n^i (k^{n+1})^{n-i}=$ 

$=[(k^{n+1})^n+\textrm{C}_n^1(k^{n+1})^{n-1}+ \cdots +\textrm{C}_n^{n-1}k^{n+1}+1]-1=k^{n+1} \cdot A$,

 for some integer $A$. That's how I found the answer.

$\blacksquare$


           REMARK CiP

          In particular cases, the solutions can be expressed differently. For $n=2$ the equation

$$x^3+y^2=z^2$$

$\Leftrightarrow \;x^3=(z-y)(z+y)$ can be solved by choosin

$$\begin{cases}z-y=x\\z+y=x^2\end{cases}$$

obtaining an infinite family of complete solutions $$x=m,\;y=\frac{m^2-m}{2},\;z=\frac{m^2+m}{2},\;m\in \mathbb{Z}.$$

(I did not investigate if these represent the complete solutions of the equation.)

          The particular case has the following solutions

The general formula provides the solutions in the case of n=2





miercuri, 30 noiembrie 2022

Problem E:16386 from GMB 10/2022

          The problem proposed for class 6, on page 480.
In translation (thanks to Miss Google):

          "Let $p$ and $q$ be two distinct prime numbers. Prove that if  $15(p+q) >8pq$, then 
          $$93pq \leqslant 174(p+q) \leqslant 145  pq."$$
 

ANSWER CiP
           One of the numbers is $2$
 and the other can be $3,\;5,\;7,\;11,\;13,\;17,\;19,\;23,\;29.$


             SOLUTION CiP
          Natural numbers that verify the condition
$$15(p+q)>8pq \tag{1}$$
 must be in finite quantity. Indeed, the condition (1) can be written equivalent to
$$\frac{1}{p}+\frac{1}{q}>\frac{8}{15}. \tag{2}$$
     If none of the numbers $p,q$, is equal to $2$, then $\frac{1}{p}+\frac{1}{q} \leqslant \frac{1}{3}+\frac{1}{5}=\frac{8}{15},$ contradicting (2). 
      Assuming $p=2$ the condition (1) is written $15(2+q)>16q\;\;\Leftrightarrow\;\;q<30$. So $3\leqslant q \leqslant 29$ and $q$ is a prime number. Then we have 
$$\frac{1}{2}+\frac{1}{29}\leqslant \frac{1}{p}+\frac{1}{q}\leqslant \frac{1}{2}+\frac{1}{3}\;\Leftrightarrow\;\frac{31}{58}\leqslant \frac{p+q}{pq}\leqslant \frac{5}{6}$$
and multiplying the last inequalities by $6 \cdot 29=174$ we get the conclusion.
$\blacksquare$

          REMARK CiP
          The condition (1) can also be written, after multiplying by 8, $$64pq-120p-120q<0\;\Leftrightarrow$$
$\Leftrightarrow \;(8p-15)(8q-15)<225$. If $p\geqslant 3$, we have $8p-15 \geqslant 9$ then we deduce $8q-15<\frac{225}{8p-15}\leqslant \frac{225}{9}=25$, so $8q<40$, $q<5$. We only have the possibility $q=3$ or $q=2$. When $q=3$, from (1) we deduce $p<5$. We can only have $p=3$ but then $p=q$, impossible. When $q=2$, from (1) we deduce $p<30$ and we find the answer.
$\square$ end REM

miercuri, 9 noiembrie 2022

FOCUS V42, No. 4 / 2022

 The magazine envelope

Envelope tire details :


The original cover (click on the image to download) :



 

 

 

 

marți, 25 octombrie 2022

vineri, 2 septembrie 2022

Et in Arcadia ego

 M-am dus sa-mi fac un Test CoviD



iar rezultatul a iesit



Dupa 5 zile de izooolare la dooomiciliu, cred ca mi-a trecut. 
Am facut peste inca 2-3 zile un test rapid casnic


miercuri, 17 august 2022

Problem 12335 from AMM 7/2022

 



          LEMMA Let $P(X)=\sum_{j=0}^pa_jX^{p-j}$ be a polynomial with integer coefficients, divisible by the polynomial $X^2+\mu X+\nu\;\in \mathbb{Z}[X]$. Then the quotient of the division $P\;:\;(X^2+\mu X+\nu)$ has integer coefficients.

          Proof of Lemma

               Let the result of the division be $$Q(X)=P(X) \;:\;(X^2+\mu X+\nu)=\sum_{j=0}^{p-2}b_jX^{p-2-j}.$$

 Identifying the coefficients of the indeterminates $X^k,\;k=p,\;p-1,\cdots,\;1,\;0$ in the equation $P(X)=(X^2+\mu X+\nu)\cdot Q(X)$, i.e.

$$\sum_{j=0}^pa_jX^{p-j}=(X^2+\mu X+\nu)(b_0X^{p-2}+b_1X^{p-3}+\cdots+b_{p-3}X+b_{p-2})$$

we get equations

$$\begin{cases}a_0=b_0\\ a_1=b_1+\mu b_0\\ a_2=b_2+\mu b_1+\nu b_0\\\;\vdots \\a_j=b_j+\mu b_{j-1}+\nu b_{j-2}\\\;\vdots \\a_{p-2}=b_{p-2}+\mu b_{p-3}+\nu b_{p-4}\\a_{p-1}=\mu b_{p-2}+\nu b_{p-3}\\a_p=\nu b_{p-2}\;.\end{cases}$$

Obviously that  $b_0=a_0,\;b_1=a_1-\mu b_0,\;\cdots,\;b_{p-2}=a_{p-2}-\mu b_{p-3}-\nu b_{p-4}\in \mathbb{Z}$.

end $\square$ Lemma


SOLUTION of PROBLEM {unfinished}

               Demonstration_CiP of UNIQUENESS

               If a certain number $z$ admits two representations

$$z=\sum_{k=0}^m\varepsilon_k(1+\imath)^k=\sum_{l=0}^n\varepsilon'_l(1+\imath)^l\;\;\;\;\varepsilon,\;\varepsilon' \in \{0,1\}$$

then there is a relationship of this kind

$$\sum_{j=0}^p \delta_j(1+\imath)^j=0\;,\;\;\delta_j\in \{-1,0,1\}. \tag{1}$$

We will prove that in (1), all $\delta_j$ must be $0$.

     We assume that the opposite occurs. If $p$ is the largest index for which $\delta_j \neq 0$, then, possibly changing the $\pm$ signs, we obtain that the equation (renumbering also the coefficients)

$X^p+\delta_1X^{p-1}+\cdots+\delta_{p-1}X+\delta_p=0,\;\;\;\delta_j \in \{-1,0,1\} \tag{2}$

has the root $1+\imath$. The equation being with real number coefficients, it will also have the root $1-\imath$ (and with the same order of multiplicity). So we have divisibility

$$X^p+\delta_1 X^{p-1}+\cdots +\delta_{p-1}X+\delta_p\;\vdots\;(X-1-\imath)(X-1+\imath).$$

Then there exists a polynomial $Q(X)\in \mathbb{Z}[X]$ (cf. LEMMA) with the property

$$(X^2-2X+2)\cdot Q(X)=X^p+\cdots+\delta_{p-1}X+\delta_p.$$

Taking $X=0$ into this equality, we will have $2\cdot Q(0)=\delta_p\;$. So $\delta_p\; \vdots \;2$ and how $\delta_p=0,\;\pm 1$ it results $\delta_p=0$. 

     Dividing the equation (2) by $X$, we get the new equation

$$X^{p-1}+\delta_1X^{p-2}+\cdots +\delta_{p-2}X+\delta_{p-1}=0,$$

 having a root $1+\imath$; it turns out the same that $\delta_{p-1}=0$, and so on...

$\blacksquare$


               Demonstration_CiP of implication 

$z$ can be represented $\;\Rightarrow\;\imath-z\;$ cannot

              Let's assume that both $z$ and $\imath-z$ admit the representations

$$z=\sum_{k=0}^n\varepsilon_k(1+\imath)^k,\;\;\imath-z=\sum_{l=0}^m\varepsilon_l'(1+\imath)^l,\;\varepsilon_k,\varepsilon_l' \in \{0,1\}.$$

$$\Rightarrow\;\imath =\sum_{k=0}^n \varepsilon_k(1+\imath)^k+\sum_{l=0}^m\varepsilon_l'(1+\imath)^l$$

$$\Rightarrow\;\imath =\sum_{j=0}^p \alpha_j(1+\imath)^j,\;\alpha_j \in \{0,1,2\}. \tag{3}$$

We consider the polynomial

$$\sum_{j=0}^p\alpha_j(1+X)^j-X,\;\;\alpha_j \in \{0,1,2\}.$$

The relation (3) tells us that this polynomial has root $\imath$, and being with real coefficients it will also have root $-\imath$. So the polynomial is divisible by $X^2+1$, that is, there exists the polynomial $S(X) \in \mathbb{Z}[X]$ (cf. LEMMA) such that

$$(X^2+1)S(X)=\sum_{j=0}^p\alpha_j(1+X)^j-X.$$

Taking $X=-1$ into the above equation, we get $2\cdot S(-1)=1$, impossible in integer numbers.

$\blacksquare \blacksquare$


          Conclusion. So far we have demonstrated 

$z$ can be represented $\Rightarrow\;\imath-z$ cannot

or equivalent

$\imath-z$ can be represented $\Rightarrow\;z$ cannot.


It remains to be shown 

$\imath-z$ cannot be represented $\;\Rightarrow\;\;z$ can it

or equivalent

$z$ cannot be represented $\;\Rightarrow\;\imath -z$ can it.

By reduction to the absurd, we should obtain a contradiction from the fact that $z$ and $\imath -z$ cannot be represented.[???]

         $\ddagger$Digression. On a page of James Propp (one of the authors of the problem) I found a discussion of the same phenomenon. Here’s a picture (looks like a Dragon) showing all 256 of the Gaussian integers expressible in the form

 a(1+i)7 + b(1+i)6 + c(1+i)5 + d(1+i)4 + e(1+i)3 + f(1+i)2 + g(1+i)1 + h(1+i)0 

where each of the numbers a,b,c,d,e,f,g,h is either 0 or 1. 

          I think the following note is the key to solving the problem:

[Note: After this article “went to press” Tom Karzes and Steve Lucas and I proved that the set of nonexpressible Gaussian integers is the set of expressible Gaussian integers rotated by 180 degrees about the complex number i/2.] 

     In reality, the $180^{\circ}$-rotation around $\imath /2$ is the symmetry with respect to this point. As you can see in the figure, the point reflection of $A$ w.r.t. point $S$ is the point $A'$.



          See also two entries in Wikipedia.

         https://en.m.wikipedia.org/wiki/Complex-base_system

         https://en.m.wikipedia.org/wiki/Complex-base_system#Base_.E2.88.921_.C2.B1_i

 end $\ddagger$Digression


miercuri, 10 august 2022

Kolejny problem z podzielnością

                     Na stronie 301 mamy Problem 1

In translation

"Show that for every natural number $n$, the number $4^n+15n-1$ is divisible by 9."

          So in the previous post, we solved it by two methods.

          I. By Mathematical Induction, let $c_n=4^n+15n-1$. For $n=0$ we have $c_0=0 \;\vdots\;9$.

Assuming $c_n\;\vdots\;9$, we have $c_{n+1}=4^{n+1}+15\cdot(n+1)-1=4\cdot 4^n+15n+14=$

$=4(c_n-15n+1)+15n+14=4c_n-45n+18\;\vdots\;9$ because each of the terms $4c_n,\;45n,\;18$ is divisible by 9, so so is their sum.

          II. With Newton's Binomial Formula

$$4^n=(3+1)^n=\sum_{k=0}^{n-2}\binom{n}{k}\cdot3^{n-k}\cdot1^k+\binom{n}{n-1}\cdot3^1\cdot 1^{n-1}+1^n=9\cdot a+3n+1$$

because in the first sum all the terms contain a factor $3^p,\;p=n,\;n-1,\dots,\;2$.

$\Rightarrow\; c_n=(9a+3n+1)+15n-1=9a+18n=9(a+2n)\;\vdots\;9.$

$\blacksquare$





duminică, 7 august 2022

vineri, 29 iulie 2022

Problem z nieoczekiwanym, od dawna spóźnionym uogólnieniem : On the convergence of a sequence of iterates

                This problem has long been waiting to be taken into consideration by me. In the book

TEODORESCU Nicolae (coord.), Probleme din Gazeta Matematică: Ediție selectivă și metodologică,

Ed Tehnică, București, 1984

 on page 487, appears problem SC 6 (solved in the same place, on pages 487-488). The author of the problem is mentioned as J. Dieudonné, without clear indications. The solution is given after an article from a Belgian magazine (see « Mathématique et Pédagogie ») number 31 from 1981.

          The same problem is the starting point in an article from MATHEMATYKA, number 3/1987, pages 138-140. The work [1] cited in the bibliography covers the same issue( Problem 173). See the image, taken from another edition:

               Here we discuss a generalization, contained in the Proposition ("TWIERDZENIE") on page 140. You can see a connection between it and Problem 174 in the image, but this does not detract from the value of the article

 

 



marți, 26 iulie 2022

Problem podzielności z "Tematy pisemnego egzaminu dojrzałosći w liceach o profilu matematyczno-fizycznym"

            It is Problem 1 from the column "Topics of the written maturity examination in high schools with a mathematical and physical profile", in the magazine MATHEMATYKA, No. 6/1986, page 363.


          In translate, thanks to Mr. DeepL:

          "Prove that if $n \in \mathbb{N}$, then $6^{2n}+3^{n+2}+3^n$ is divisible by $11$."


               We will note $a \mid b$ if the number $a$ divides the number $b$, respectively $b\; \vdots \; a$  the equivalent statement that the number $b$ is divisible by the number $a$.


SOLUTION CiP


               Solution by Mathematical Induction. Let $c_n \overset{def}{=}6^{2n}+3^{n+2}+3^n$. 

          For $n=0,\;c_0=6^0+3^2+3^0=11$, so $c_0 \;\vdots \;11$.

          We assume the statement true for $n=k,\;c_k \;\vdots \;11$. Then 

$$c_{k+1}=6^{2(k+1)}=3^{(k+1)+2}+3^{k+1}=6^{2k+2}+3^{k+3}+3^{k+1}=6^{2k}\cdot 36+3^{k+3}+3^{k+1}=$$

$$=3(12 \cdot 6^{2k}+3^{k+2}+3^k)\;\underset{3^{k+2}+3^k=c_k-6^{2k}}{=}\;3(12\cdot 6^{2k}+c_k-6^{2k})=$$

$$=3(11\cdot 6^{2k}+c_k)\;\;\vdots\;\;11,$$

because in parenthesis all terms are divisible by $11$. So the statement is also true for $n=k+1$. 

     By Mathematical_Induction, the statement is true for all $n\in \mathbb{N}.$

$\blacksquare$


SOLUTION  2  CiP


               We write the given expression successively

$$6^{2n}+3^{n+2}+3^n=$$

$$=2^{2n}\cdot 3^{2n}+3^{n+2}+3^n=3^n\cdot(2^{2n}\cdot 3^n+3^2+1)=3^n(4^n\cdot 3^n+10)=$$

$$=3^n({12}^n+10)=3^n[(11+1)^n+10]=3^n[(11\cdot d +1)+10]=3^n(d+1)\cdot 11\;\vdots\;11.$$

     We used that, in developing $(11+1)^n$ with Newton's binomial formula, the terms, except the last one which are $1^n$, are divisible by $11$.

$\blacksquare \;\blacksquare$


          REMARKS

                     $1^R.$ We see in the image that Problem 2 is of the same kind.

          Directly, using the formula $(a+b)^n=a\cdot d+b^n$, we have

$$c_n\;\overset{def}{=}2^{6n+1}+3^{2n+2}=2\cdot {64}^n+9 \cdot 9^n=2\cdot(66-2)^n+9\cdot (11-2)^n=$$

$$=2(66\cdot d_1+(-2)^n)+9(11\cdot d_2+(-2)^n)=11\cdot (12d_1+9d_2)+2\cdot (-2)^n+9 \cdot (-2)^n=$$

$$=11d_3+11 \cdot (-2)^n\;\;\vdots \;11.$$

          In another way, through Mathematical Induction as in Solution 1, we can use the formulas

$$c_{n+1}=2^{6n+7}+3^{2n+4}=64 \cdot 2^{6n+1}+9\cdot3^{2n+2}=64c_n-55\cdot 3^{2n+2},$$

or,

$$c_{n+1}=9c_n+55\cdot 2^{6n+1}$$

whence we see that $c_n\;\vdots 11\;\;\Rightarrow \;c_{n+1}\;\vdots 11.$

end Rem. 1


                    $2^R.$ The numbers in Problem 1 are in fact $6^{2n}+10\cdot 3^n$ so we have a whole class of problems of the type

$$\alpha \cdot a^{k\cdot n}+\beta \cdot b^{l\cdot n}\;\vdots \;p. \tag{1}$$

We just have to find suitable integers $\alpha, \beta \in \mathbb{Z},\;k,l \in \mathbb{N}$ and (possibly prime) $p$ so that $(1)$ is true for any $n\in \mathbb{N}$.

end Rem. 2



sâmbătă, 23 iulie 2022

manevra

LLLLL

Versiunea curentă este

XXXXX

TeX and LaTeX

FFFFF

&

XeLaTeX

&

A L T E ..... M A N E V R E

&

&

&&

miercuri, 20 iulie 2022

Codul LATEX pentru LaTex

 daca vrei sa arate asa


acesta este codul, dar NU html

<math xmlns="http://www.w3.org/1998/Math/MathML">
  <mi>L</mi>
  <mspace width="-.325em" />
  <mpadded height="+.21em" depth="-.21em" voffset="+.21em">
      <mstyle displaystyle="false" scriptlevel="1">
          <mi>A</mi>
    </mstyle>
  </mpadded>
  <mspace width="-.17em" />
  <mi>T</mi>
  <mspace width="-.14em" />
  <mpadded height="-.5ex" depth="+.5ex" voffset="-.5ex">
      <mi>E</mi>
  </mpadded>
  <mspace width="-.115em" />
  <mi>X</mi>
</math>
Alta forma, de tipul

TeX and LaTeX

se face cu codul
 <p><span class="tex">T<sub>e</sub>X</span> and 
<span class="latex">L<sup>a</sup>T<sub>e</sub>X</span></p>
 

Putin mai fotografic
 
se face cu codul

Versiunea curentă este

<p>Versiunea curentă este
<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {L\!\!^{{}_{\scriptstyle A}}\!\!\!\!\!\;\;T\!_{\displaystyle E}\!X} \,2_{\displaystyle \varepsilon }}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle scriptlevel="0" displaystyle="true">
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">L</mi>
<mspace width="negativethinmathspace"></mspace>
<msup>
<mspace width="negativethinmathspace"></mspace>
<mrow class="MJX-TeXAtom-ORD">
<msub>
<mrow class="MJX-TeXAtom-ORD">

</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mstyle scriptlevel="1" displaystyle="false">
<mi mathvariant="normal">A</mi>
</mstyle>
</mrow>
</msub>
</mrow>
</msup>
<mspace width="negativethinmathspace"></mspace>
<mspace width="negativethinmathspace"></mspace>
<mspace width="negativethinmathspace"></mspace>
<mspace width="negativethinmathspace"></mspace>
<mspace width="negativethinmathspace"></mspace>
<mspace width="thickmathspace"></mspace>
<mspace width="thickmathspace"></mspace>
<mi mathvariant="normal">T</mi>
<msub>
<mspace width="negativethinmathspace"></mspace>
<mrow class="MJX-TeXAtom-ORD">
<mstyle scriptlevel="0" displaystyle="true">
<mi mathvariant="normal">E</mi>
</mstyle>
</mrow>
</msub>
<mspace width="negativethinmathspace"></mspace>
<mi mathvariant="normal">X</mi>
</mrow>
<mspace width="thinmathspace"></mspace>
<msub>
<mn>2</mn>
<mrow class="MJX-TeXAtom-ORD">
<mstyle scriptlevel="0" displaystyle="true">
<mi>ε<!-- ε --></mi>
</mstyle>
</mrow>
</msub>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \mathrm {L\!\!^{{}_{\scriptstyle A}}\!\!\!\!\!\;\;T\!_{\displaystyle E}\!X} \,2_{\displaystyle \varepsilon }}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55ca3b312fbbd9013a2b13caa0d0c86be6283b9c" class="mwe-math-fallback-image-inline" aria-hidden="true" style="vertical-align: -1.005ex; width:8.99ex; height:2.843ex;" alt="{\displaystyle \mathrm {L\!\!^{{}_{\scriptstyle A}}\!\!\!\!\!\;\;T\!_{\displaystyle E}\!X} \,2_{\displaystyle \varepsilon }}"></span>
</p> 
 Scrierea CHIAR in Latex se face cu codul 
\LaTex
care NU ESTE PREVAZUT IN MathJax
 
Aceasta este o varianta mai "fitzoasa"

XeLaTeX

cu codul
<p><span class="latex">X<sub><span class=revcap>e</span></sub>L<sup>a</sup>T<sub>e</sub>X</span></p>
 

 

MATEMATYKA : czasopismo dla nauczycieli

      Aktualny magazyn ma swoją stronę tutaj.

 

 Aby pobrać kliknij na obrazek.

Aby pobrać kliknij na obrazek.

          To były numery, które wciąż mam. Magazyn obchodził 35-lecie istnienia.

          W jednym, dwóch lub trzech numerach 6 roku znajduje się rubryka "ZADANIA KONKURSOWE". Zobacz podsumowanie publikowane w ostatnim numerze każdego roku; w 1982 roku jedna kolumna tego rodzaju ukazała się w numerze 1, s. 54 i nast.

          Och, spójrz, w 1986 felieton, o którym mówiłem, pojawił się 4 razy. Od 1986 do 1989 przesyłałem również rozwiązania niektórych problemów. Wśród moich prac znalazłem teczkę z kilkoma kopiami szkiców tych rozwiązań. Pisałem po polsku, jak wiedziałem (kupiłem słowniki i na zeszycie zrobiłem listę wyrażeń, które zaczerpnąłem z tekstów w magazynie). Dziś nie byłbym w stanie zrobić czegoś takiego.

      - - plik (z nazwami miesięcy w roku)


== format koperty wysłanej do redakcji z numerami z numeru czasopisma
-
- kartki z problemami przetłumaczonymi przeze mnie na język rumuński, ze znalezionym przeze mnie rozwiązaniem ołówkiem

 





Aby pobrać kliknij na obrazek.



Aby pobrać kliknij na obrazek.
             Myślę, że to pierwszy numer magazynu, z którego przesyłałem rozwiązania.  Ci, którzy przesłali rozwiązania, wymienieni są w rubryce. W tej liczbie w rozwiązaniach pojawia się również 
rumuńska nazwa. Zakreśliłem to na obrazku. Czasami widywałem też solverów z Rumunii.
     Oto zadania przetłumaczone i przygotowane do redakcji, wykonane przeze mnie.



 










(Jeśli na odwrocie kartki z przetłumaczonym problemem nie ma nic, oznacza to, że go nie rozwiązaliśmy.)

          Rozwiązania są następujące, gdy wysłałem je do redakcji.


  











                Zrobię to samo z innymi numerami, które jeszcze posiadam. 
               
                 Niestety nigdy nie otrzymałem czasopism, w których publikowane są rozwiązania problemów i uzyskana przez nich ocena. Jeśli ktoś ma coś takiego, proszę o przesłanie kopii.

               Znowu znalazłem jeszcze dwa zestawy rozwiązań, z numerów 2 i 3 na rok 1986. Czasopisma, których nie mogę znaleźć.
           Wydania 1176-1180 od numeru 2/1986:


 

 




          Wydania 1181-1185 od numeru 3/1986:






 

 


               Kontynuuję z innymi magazynami, które nadal mam. I z rozwiązaniami, które wysłałem.

Aby pobrać kliknij na obrazek.

Aby pobrać kliknij na obrazek.



Aby pobrać kliknij na obrazek.



 


 
 


 
 


 



 
 


 
 


 
 


 
 
  
  

 
Aby pobrać kliknij na obrazek.

 
Aby pobrać kliknij na obrazek.


  


  
 


  


  





  





 
Aby pobrać kliknij na obrazek.
Z tego numeru przetłumaczyłem Problemy bardziej niedbale. I wydaje się, że nie wysłałem też żadnych rozwiązań.
 


 


 

  
   

 



 
Aby pobrać kliknij na obrazek.


Aby pobrać kliknij na obrazek.
 


 

 


 



 



Teraz kilka stron z nieudanymi próbami








 A teraz spójrz na przesłane przeze mnie rozwiązania.


 

 


 



      Niewiele rozwiązałem z tego numeru magazynu. Ćwiczenie ze strony 128.

Aby pobrać kliknij na obrazek.


Aby pobrać kliknij na obrazek.






 

 






  



 



Aby pobrać kliknij na obrazek.


 

 


 


 



  



  



  




          W tym roku warto zauważyć, że ukazało się tylko 5 numerów magazynu, a nie 6.  
Aby pobrać kliknij na obrazek.

.......................................................................................................................................
   
          Dzięki temu moja przygoda z tym pięknym magazynem matematycznym dobiegła końca. Rok 1989 oznaczał także koniec komunizmu w krajach Europy Wschodniej.

.......................................................................................................................................

Do widzenia !