Na stronie 301 mamy Problem 1
In translation"Show that for every natural number n, the number 4^n+15n-1 is divisible by 9."
So in the previous post, we solved it by two methods.
I. By Mathematical Induction, let c_n=4^n+15n-1. For n=0 we have c_0=0 \;\vdots\;9.
Assuming c_n\;\vdots\;9, we have c_{n+1}=4^{n+1}+15\cdot(n+1)-1=4\cdot 4^n+15n+14=
=4(c_n-15n+1)+15n+14=4c_n-45n+18\;\vdots\;9 because each of the terms 4c_n,\;45n,\;18 is divisible by 9, so so is their sum.
II. With Newton's Binomial Formula
4^n=(3+1)^n=\sum_{k=0}^{n-2}\binom{n}{k}\cdot3^{n-k}\cdot1^k+\binom{n}{n-1}\cdot3^1\cdot 1^{n-1}+1^n=9\cdot a+3n+1
because in the first sum all the terms contain a factor 3^p,\;p=n,\;n-1,\dots,\;2.
\Rightarrow\; c_n=(9a+3n+1)+15n-1=9a+18n=9(a+2n)\;\vdots\;9.
\blacksquare
Niciun comentariu:
Trimiteți un comentariu