1.(Euclid)
sin^2 18^\circ+sin^2 30^\circ=sin^2 36^\circ
or, expressing angles in radians
sin^2 \frac{\pi}{10}+sin^2 \frac{\pi}{6}=sin^2 \frac{\pi}{5}.
2.
cos 36^\circ -cos 72^\circ =\frac{1}{2}
or, expressing angles in radians
cos \frac{\pi}{5}-cos\frac{2\pi}{5}=\frac{1}{2}.
3.
i) cos \frac{\pi}{7} -cos \frac{2\pi}{7}+cos \frac{3\pi}{7}=\frac{1}{2};
ii) sin \frac{\pi}{14}-sin \frac{3\pi}{14}+sin \frac{5\pi}{14}=\frac{1}{2};
iii) cos \frac{\pi}{7} \cdot cos \frac{2\pi}{7} \cdot cos \frac{3\pi}{7}=\frac{1}{8};
iv) sin \frac{\pi}{14}\cdot sin\frac{3\pi}{14} \cdot sin \frac{5\pi}{14}=\frac{1}{8}.
4.
1^\circ .\;\;cos\frac{\pi}{21}-cos \frac{4\pi}{21}+cos \frac{5\pi}{21}=\frac{\sqrt{21}-1}{4};
1^{\circ \circ}.\;\;cos \frac{2\pi}{21}+cos\frac{8\pi}{21}+cos\frac{10\pi}{21}=\frac{\sqrt{21}+1}{4};
2^\circ\;\;-sin\frac{\pi}{21}+sin\frac{4\pi}{21}+sin\frac{5\pi}{21}=\frac{1}{2} \sqrt{\frac{5+\sqrt{21}}{2}};
3^\circ.\;\;sin\frac{2\pi}{21}+sin\frac{8\pi}{21}-sin\frac{10\pi}{21}=\frac{1}{2}\sqrt{\frac{5-\sqrt{21}}{2}};
4^\circ\;\;cos\frac{\pi}{21}\cdot cos\frac{4\pi}{21}\cdot cos\frac{5\pi}{21}=\frac{5+\sqrt{21}}{16};
5^\circ.\;\;cos\frac{2\pi}{21}\cdot cos\frac{8\pi}{21}\cdot cos\frac{10\pi}{21}=\frac{5-\sqrt{21}}{16};
6^\circ.\;\;sin\frac{\pi}{21}\cdot sin\frac{4\pi}{21}\cdot sin\frac{5\pi}{21}=\frac{1}{8}\sqrt{\frac{5-\sqrt{21}}{2}}.
5. a) \sin \frac{\pi}{n} \cdot \sin \frac{2\pi}{n} \dots \sin \frac{(n-1)\pi}{n}=\frac{n}{2^{n-1}}
b) \sin \frac{\pi}{2n} \cdot \sin \frac{2\pi}{2n} \dots \sin \frac{(n-1)\pi}{2n}= \frac{\sqrt{n}}{2^{n-1}}
c) \sin \frac{\pi}{2n+1} \cdot \sin \frac{2\pi}{2n+1} \dots \sin \frac{n\pi}{2n+1}=\frac{\sqrt{2n+1}}{2^n}
Niciun comentariu:
Trimiteți un comentariu