Here we will demonstrate the formulas
\sin \frac{\pi}{2n+1}\cdot\sin \frac{2\pi}{2n+1}\cdot_{\dots} \cdot\sin \frac{n\pi}{2n+1}=\frac{\sqrt{2n+1}}{2^n} \tag{1}
\sin\frac{\pi}{2n}\cdot\sin \frac{2\pi}{2n}\cdot_{\dots}\cdot\sin \frac{(n-1)\pi}{2n}=\frac{\sqrt{n}}{2^{n-1}} \tag{2}
We will start from a previously demonstrated formula, written for m\in \mathbb{N} \setminus \{0,\;1\} instead of n:
\sin \frac{\pi}{m}\cdot\sin \frac{2\pi}{m}\cdot_{\dots} \cdot \sin \frac{(m-1)\pi}{m}=\frac{m}{2^{m-1}} \tag{3}
Let's put in (3): m-odd, i.e. m=2n+1,\;n\in \mathbb{N}\setminus\{0\}. We will now write down a few more of the m-1=2n factors of (3):
\sin \frac{\pi}{2n+1} \cdot \sin \frac{2\pi}{2n+1}\cdot_{\dots} \cdot \sin \frac{n\pi}{2n+1} \cdot
\cdot \sin \frac{(n+1)\pi}{2n+1} \cdot_{\dots}\cdot \sin \frac{(2n-1)\pi}{2n+1} \cdot \sin \frac{2n\pi}{2n+1}=\frac{2n+1}{2^{2n}} \tag{4}
Considering the formula \sin (\pi-\alpha)=\sin \alpha and noting that
\pi-\frac{2n\pi}{2n+1}=\frac{\pi}{2n+1} \quad \pi-\frac{(2n-1)\pi}{2n+1}=\frac{2\pi}{2n+1} \quad \dots \quad \pi-\frac{(n+1)\pi}{2n+1}=\frac{n\pi}{2n+1}
we see that in (4) the factors are two by two equal, one from each row. Then
\left ( \sin \frac{\pi}{2n+1} \cdot \sin \frac{2\pi}{2n+1} \cdot_{\dots} \cdot \sin \frac{n\pi}{2n+1}\right )^2=\frac{2n+1}{2^{2n}}
and taking the square root of both members results (1).
\blacksquare
Let's put in (3) m-even, i.e. m=2n,\;n\in \mathbb{N}\setminus \{0\}. We now have
\sin \frac{\pi}{2n} \cdot \sin \frac{2\pi}{2n}\cdot_{\dots} \cdot \sin \frac{(n-1)\pi}{2n} \cdot \overset{=1}{\overbrace{\sin \frac{n\pi}{2n}}} \cdot
\cdot \sin \frac{(n+1)\pi}{2n} \cdot_{\dots} \cdot \sin \frac{(2n-2)\pi}{2n} \cdot \sin \frac{(2n-1)\pi}{2n}=\frac{2n}{2^{2n-1}} \tag{5}
Noting that
\pi-\frac{(2n-1)\pi}{2n}=\frac{\pi}{2n}\quad \pi-\frac{(2n-2)\pi}{2n}=\frac{2\pi}{2n}\quad \dots \quad \pi-\frac{(n+1)\pi}{2n}=\frac{(n-1)\pi}{2n}
and considering again the formula \sin (\pi-\alpha)=\sin \alpha we have
\left ( \sin \frac{\pi}{2n} \cdot \sin \frac{2\pi}{2n}\cdot_{\dots} \cdot \sin \frac{(n-1)\pi}{2n}\right )^2=\frac{n}{2^{2n-2}}.
Taking the square root of both members results (2).
\blacksquare\;\blacksquare
Niciun comentariu:
Trimiteți un comentariu