Processing math: 4%

marți, 4 martie 2025

A Product of Many Sinuses // Birçok Sinüsün Ürünü

          I will look for some proofs of the trigonometric identity

\sin \frac{\pi}{n} \cdot \sin \frac{2\pi}{n} \cdot _{\dots} \cdot \sin \frac{(n-1)\pi}{n}=\frac{n}{2^{n-1}} \tag{1}


          Solution 1[based on Marcel ȚENA's book "Rădăcinile Unității" (The Roots 

                         of Unity) from the solution on pages 112-113 of Exercise #6 (page 16)]

           We consider the polynomial X^n-1 whose roots are \zeta=\cos \frac{2\pi}{n}+\imath \sin \frac{2\pi}{n}

\zeta ^2,\;\zeta^3,\;\dots \zeta^{n-1},\;\zeta^n=1. We have equality

X^n-1=\prod \limits_{k=0}^{k=n-1}(X-\zeta^k) \tag{1.1}

from which, simplifying by the factor X-1, it results

X^{n-1}+X^{n-2}+\dots+X+1=\prod \limits_{k=1}^{k=n-1}(X-\zeta^k).

     For X=1 we obtain

n=\prod \limits_{k=1}^{k=n-1}(1-\zeta^k). \tag{1.2}

But, using the trigonometric formulas

1-\cos 2\alpha=2\sin^2 \alpha,\;\sin 2\alpha =2\sin \alpha \cdot \cos \alpha

 we have 1-\zeta^k=1-\cos \frac{2k\pi}{n}-\imath\sin \frac{2k\pi}{n}=-2\imath\sin \frac{k\pi}{n}\left(\cos\frac{k\pi}{n}+\imath \sin \frac{k\pi}{n}\right )

and then (1.2) is written 

n=2^{n-1} \cdot \imath^{n-1} \cdot \prod \limits_{k=1}^{k=n-1}\sin \frac{k\pi}{n} \cdot \prod \limits_{k=1}^{k=n-1}\left ( \cos \frac{k\pi}{n}+\imath \sin \frac{k\pi}{n}\right ).

But then the moduli of the two members are also equal, so

n=2^{n-1} \cdot 1^{n-1} \cdot \prod \limits_{k=1}^{k=n-1} \sin \frac{k\pi}{n} \cdot \prod \limits_{k=1}^{k=n-1}1

from which the relation (1) immediately follows.

\blacksquare



          Solution 2 

           From the identity^{\color{Red}{citation\; needed}}  \prod\limits_{k=0}^{k=n-1} \sin \left ( x+\frac{k\pi}{n}\right )=\frac{\sin nx}{2^{n-1}}  we obtain, passing the first factor to the right-hand side

\sin \left (x+\frac{\pi}{n} \right ) \cdot \sin \left ( x+\frac{2\pi}{n} \right ) \cdot _{\dots} \cdot \sin \left ( x+\frac {(n-1)\pi}{n} \right )=\frac{1}{2^{n-1}} \cdot \frac{\sin nx}{\sin x} \tag{2.1}

Going in (2.1) to the limit when x \rightarrow 0, in the left-hand side we obtain the product that appears on the left at (1), and in the right-hand side we consider that 

\lim \limits_{x \to 0} \frac{\sin nx}{\sin x}=\lim \limits_{x \to 0} \frac{\sin nx}{nx} \cdot \lim \limits_{x \to 0} \frac{x}{\sin x} \cdot n=1 \cdot 1 \cdot n

and we obtain the value on the right of (1)

\blacksquare

Niciun comentariu:

Trimiteți un comentariu