SPECIAL PROBLEMS of MATHEMATICAL ANALYSIS for COMPETITIONS

 

 

         1.[2022.06.14]

               If $\;f\;:\;[a,b]\;\rightarrow \;\mathbb{R}\;$ is monotonic, then

$$\int_a^b \left | f(x)-f \left (\frac{a+b}{2} \right ) \right | dx \;\leqslant \;\int_a^b \left | f(x)-c \right | dx,$$ 

          whatever the number $c \in \mathbb{R}.$

 

          2.[2022.07.29]

                Let $f\;:\;(0,a)\;\rightarrow\;\mathbb{R} \;\;(a>0)$ be a continuous function 

such that $0<f(x)<x$ for $x \in (0,a)$. We define by recurrence 

$$f_1(x)=f(x),\;f_{n+1}(x)=f(f_n(x)),\;n=1,2,\dots$$

           If for some number $m>0$ there exist

$$\lim_{x \to 0+}\;[ ( f(x))^{-m}-x^{-m}]=p>0,$$

 then for any $x \in(0,a)$ we have

$$\lim_{n \to \infty}\;(n\cdot p)^{m^{-1}} \cdot f_n(x) =1.$$

 

  3.[]

                Let




 


Niciun comentariu:

Trimiteți un comentariu