"Monotonic" has here the meaning of "increasing" or "decreasing".
Problem 20 475 (for grade 12, published in GMB_6--1985) solved in GMB_6--1986, page 212 :
Solution
We will show a seemingly simpler inequality :
If \;g\;:\;[0,1]\;\rightarrow \;\mathbb{R} is increasing, then
\int_0^1\left | g(t)-c \right | dt\;\geqslant\;\int_0^1\left | g(t)-g\left (\frac{1}{2}\right ) \right | dt\;,\;\;(\forall )c\in \mathbb{R}. \tag{1}
If we demonstrated (1), then taking \;g(t)=f\left (a+(b-a) \cdot t \right ), we have g is increasing if f is increasing, so
\int_0^1 \left | f \left ( a+(b-a) \cdot t \right )-c \right | dt \geqslant \int_0^1 \left | f \left ( a+(b-a) \cdot t \right ) -f \left ( \frac{a+b}{2} \right ) \right | dt.
In the above integrals we substitute
\begin{cases}x=a+(b-a)\cdot t \;,\;\;t=\frac{x-a}{b-a}\\t=0\;\leftrightarrow \;x=a\;,\;\;t=1\;\leftrightarrow \;x=b \end{cases}
and we get
\int_a^b \left |f(x)-c \right | \cdot \frac{dx}{b-a}\geqslant \int_a^b \left | f(x)-f\left ( \frac{a+b}{2} \right ) \right | \cdot \frac{dx}{b-a}
which multiplied by b-a >0 leads us to the original statement.
To prove (1) we write
\int_0^1\left | g(x)-c \right |dx=\int_0^{\frac{1}{2}}\left |g(x)-c \right |dx+\int_{\frac{1}{2}}^1\left | g(x)-c \right |dx.\tag{2}
In the last integral of the (2) we replace \begin{cases}x=u+\frac{1}{2}\\x=\frac{1}{2}\;\to u=0\\x=1\;\to u=\frac{1}{2}\end{cases}
\int_{\frac{1}{2}}^1\left |g(x)-c \right | dx\;\underset{x=u+\frac{1}{2}}{==}\;\int_0^{\frac{1}{2}}\left |g(u+\frac{1}{2})-c \right |du=\int_0^{\frac{1}{2}}\left |g(x+\frac{1}{2})-c \right |dx, so (2) is written
\int_0^1 \left |g(x)-c \right |dx=\int_0^{\frac{1}{2}}\left | g(x)-c \right |dx+\int_0^{\frac{1}{2}}\left |g(x+\frac{1}{2})-c \right |dx. \tag{3}
We have g(x+\frac{1}{2})-g(x)\;\underset{g\nearrow}{=}\left |g(x+\frac{1}{2})-g(x) \right |=\left |\left (g(x+\frac{1}{2})-c \right )-(g(x)-c) \right |\;\;\underset{|a-b|\leqslant |a|+|b|}{\leqslant}\;\;
\leqslant \left |g(x+\frac{1}{2})-c \right |+|g(x)-c|
and taking the integral we get
\int_0^{\frac{1}{2}}\left ( g(x+\frac{1}{2})-g(x) \right ) dx \leqslant \int_0^{\frac{1}{2}} \left | g(x+\frac{1}{2})-c \right |dx+\int_0^{\frac{1}{2}} \left | g(x)-c \right |dx \underset{(3)}{=}\int_0^1 |g(x)-c|dx.
So we have inequalities :
\int_0^1 |g(x)-c|dx \geqslant \int_0^{\frac{1}{2}}\left (g(x+\frac{1}{2})-g(x) \right )dx\;\;\;\Leftrightarrow
\Leftrightarrow \;\int_0^1 |g(x)-c|dx \geqslant \int_0^{\frac{1}{2}}\left \{ \left [g(x+\frac{1}{2})-g(\frac{1}{2}) \right ]+ \left [g(\frac{1}{2})-g(x) \right ] \right \}dx \;\Leftrightarrow
\Leftrightarrow \;\int_0^1|g(x)-c|dx \geqslant \int_0^{\frac{1}{2}}[g(x+\frac{1}{2})-g(\frac{1}{2})]dx+\int_0^{\frac{1}{2}}[g(\frac{1}{2})-g(x)]dx.\tag{4}
The second integral in (4) becomes, with the substitution \begin{cases}v=x+\frac{1}{2}\\x=0\leftrightarrow v=\frac{1}{2}\\x=\frac{1}{2}\leftrightarrow v=1\end{cases}
\int_0^{\frac{1}{2}}[g(x+\frac{1}{2})-g(\frac{1}{2})]dx\;\overset{v=x+\frac{1}{2}}{=}\;\int_{\frac{1}{2}}^1[g(v)-g(\frac{1}{2})]dv=\int_{\frac{1}{2}}^1[g(x)-g(\frac{1}{2})]dx,
and, because on the set [\frac{1}{2},1] we have g(x)-g(\frac{1}{2})=|g(x)-g(\frac{1}{2})|, we can't write
\int_0^{\frac{1}{2}}[g(x+\frac{1}{2})-g(\frac{1}{2})]dx=\int_{\frac{1}{2}}^1\left |g(x)-g(\frac{1}{2})\right |dx.
With the one above, and with the fact that on the set [0,\frac{1}{2}] we have g(\frac{1}{2})-g(x)=|g(\frac{1}{2})-g(x)|, the relationship (4) is written
\int_0^1|g(x)-c|dx \geqslant \int_{\frac{1}{2}}^1\left |g(x)-g(\frac{1}{2})\right |dx+\int_0^{\frac{1}{2}}\left |g(x)-g(\frac{1}{2})\right |dx=\int_0^1\left |g(x)-g(\frac{1}{2}) \right | dx,
and (1) is demonstrated.
Let now be f decreasing function. Then -f is increasing and for -f we apply the demonstrated property, taking the constant equal to -c :
\int_a^b\left | (-f(x))-(-f\left (\frac{a+b}{2} \right ))\right | dx \leqslant \int_a^b\left |(-f(x))-(-c)\right |dx\;\Leftrightarrow
\Leftrightarrow\;\int_a^b\left |f\left (\frac{a+b}{2}\right )-f(x) \right |dx\leqslant \int_a^b|c-f(x)|dx
and inequality results again.
\blacksquare
Niciun comentariu:
Trimiteți un comentariu