Given a triangle $ABC$,
a necessary and sufficient condition for the line $CD$ to be tangent
to the circle circumscribing the triangle is $\angle{BAC} \equiv \angle{BCD}.$
The condition is necessary : $CD$ - is tangent to circle $\Rightarrow\;\angle{BAC}=\angle{BCD}.$
Indeed, we have the equalities between the measures of angles and arcs of the circle:
$$\widehat{BAC}=\frac{\overset{\frown}{BC}}{2},\;\;\widehat{BCD}=\frac{\overset{\frown}{BC}}{2}$$
hence the conclusion.
The condition is sufficient : $\angle{BAC}=\angle{BCD}\;\Rightarrow$ $CD$ - is tangent to the
circle circumscribing the triangle.
For demonstration we take $O$ the center of the circumscribed circle.
If the point $O$ is inside the triangle, then we write the relation
$$\widehat{AOB}+\widehat{BOC}+\widehat{COA}=180^{\circ}.$$
We show the proof when point $O$ is outside the triangle. In this case we have the relationship
$$\widehat{BOA}+\widehat{AOC}=\widehat{BOC}.$$
From the isosceles triangles $AOB\;(OA=OB)$ and $AOC\;(OA=OC)$ it follows
$$\widehat{BOA}=180^{\circ}-2 \cdot \widehat{BAO},\;\;\widehat{AOC}=180^{\circ}-2 \cdot \widehat{CAO}$$
so $\widehat{BOC}=360^{\circ}-2 \cdot (\widehat{BAO}+\widehat{CAO})=360^{\circ}-2 \cdot \widehat{BAC}.$
But in the isosceles triangle $BOC$ we have
$$\widehat{BCO}=\frac{180^{\circ}-\widehat{BOC}}{2}=\frac{2\cdot \widehat{BAC}-180^{\circ}}{2}=\widehat{BAC}-90^{\circ}.$$
Using the hypothesis $\widehat{BAC}=\widehat{BCD}$ results $$\widehat{OCD}=\widehat{BCD}-\widehat{BCO}=\widehat{BAC}-(\widehat{BAC}-90^{\circ})=90^{\circ},$$
so the line $CD$ is perpendicular to the radius $OC$ of the circle circumscribing the triangle $ABC$, i.e. it is tangent to this circle.
$\blacksquare$
As an application of this property we solve the following problem:
(from the GMB exercise supplement, from October 2009 (page 3; proposed for 7th grade at a student summer camp). In translation, thanks to Mr DeepL
"The median $AM$ of the acute triangle $ABC$ intersects the circle
circumscribing the triangle a second time at point $D$. If $E$ is the symmetric
point of $A$ with respect to $M$, then show that the line $BC$ is the common
tangent of the circumscribed circles of triangles $BDE$ and $CDE$."
For demonstration, let's take a simplified figure.
From $MB=MC$ and $MA=ME\;\;\Rightarrow\;BACE$ - parallelogram. We have equals angles:$$\angle{CAE} \equiv \angle{AEB}\;\;\;\angle{BAE}\equiv \angle {AEC},$$
or written
$$\widehat{CAD}=\widehat{DEB},\;\;\;\widehat{BAD}=\widehat{DEC}.\tag{1}$$
We still have the equalities between angles and arcs:
$$\widehat{CAD}=\frac{\overset{\frown}{CD}}{2}=\widehat{CBD,}\;\;\;\widehat{BAD}=\frac{\overset{\frown}{BD}}{2}=\widehat{BCD}. \tag{2}$$
From (1) and (2) follows
$\widehat{DBC}=\widehat{DEB}$ hence $BC$ is tangent to the circle circumscribed of $\Delta BDE,$
$\widehat{DCB}=\widehat{DEC}$ hence $CB$ is tangent to the circle circumscribed of $\Delta CDE$.
$\blacksquare\;\blacksquare$
Niciun comentariu:
Trimiteți un comentariu