Processing math: 100%

vineri, 2 decembrie 2022

Problem 28423 from GMB 10/2022

            The problem is proposed for the 9th grade, on page 483.

In translation, thanks to Miss Google:
          "Show that the equation x^{n+1}+y^n=z^n has an infinity of solutions in the set of nonzero natural numbers, for any natural number n \geqslant 2."

ANSWER CiP
x=\frac{(k^{n+1}+1)^n-1}{k^n},\;\;y=\frac{(k^{n+1}+1)^n-1}{k^{n+1}},\;\;z=\frac{(k^{n+1}+1)^{n+1}-k^{n+1}-1}{k^{n+1}}
represent solutions of the given equation, for k \in \mathbb{N}\setminus \{0\}.

                    Solution CiP

               Let us first show that the values given in the Answer are solutions of the equation.
          Let l \underset{def}{=} k^{n+1}+1. Then x=\frac{l^n-1}{k^n},\;y=\frac{l^n-1}{k^{n+1}},\;z=\frac{l^{n+1}-l}{k^{n+1}} and we have
x^{n+1}+y^n=\frac{(l^n-1)^{n+1}}{k^{n(n+1)}}+\frac{(l^n-1)^n}{k^{(n+1)n}}=
 
=\frac{(l^n-1)^n}{k^{(n+1)n}}\cdot [(l^n-1)+1]=\frac{(l^n-1)^n \cdot l^n}{k^{(n+1)n}}=\left ( \frac{l(l^n-1)}{k^{n+1}} \right )^n=\left ( \frac{l^{n+1}-l}{k^{n+1}} \right ) ^n\;=\;\;z^n.
          We found the expressions in the answer by trying to find solutions of the given equation with x=ky,\;k \in \mathbb{N} \setminus \{ 0 \}. We have
 x^{n+1}+y^n=k^{n+1} \cdot y^{n+1}+y^n=y^n(k^{n+1} \cdot y+1).
 

For the above result to be a power of n we must have k^{n+1}y+1=l^n for some integer l, so y=\frac{l^n-1}{k^{n+1}}. For y to be an integer, it is enough to choose l=k^{n+1}+1 because according to the binomial theorem we have

l^n-1=(k^{n+1}+1)^n-1=\sum_{i=0}^n \textrm{C}_n^i (k^{n+1})^{n-i}= 

=[(k^{n+1})^n+\textrm{C}_n^1(k^{n+1})^{n-1}+ \cdots +\textrm{C}_n^{n-1}k^{n+1}+1]-1=k^{n+1} \cdot A,

 for some integer A. That's how I found the answer.

\blacksquare


           REMARK CiP

          In particular cases, the solutions can be expressed differently. For n=2 the equation

x^3+y^2=z^2

\Leftrightarrow \;x^3=(z-y)(z+y) can be solved by choosin

\begin{cases}z-y=x\\z+y=x^2\end{cases}

obtaining an infinite family of complete solutions x=m,\;y=\frac{m^2-m}{2},\;z=\frac{m^2+m}{2},\;m\in \mathbb{Z}.

(I did not investigate if these represent the complete solutions of the equation.)

          The particular case has the following solutions

The general formula provides the solutions in the case of n=2





Niciun comentariu:

Trimiteți un comentariu