In translation (thanks to Miss Google):The problem proposed for class 6, on page 480.
"Let p and q be two distinct prime numbers. Prove that if 15(p+q) >8pq, then
93pq \leqslant 174(p+q) \leqslant 145 pq."
ANSWER CiP
One of the numbers is 2
and the other can be 3,\;5,\;7,\;11,\;13,\;17,\;19,\;23,\;29.
SOLUTION CiP
Natural numbers that verify the condition
15(p+q)>8pq \tag{1}
must be in finite quantity. Indeed, the condition (1) can be written equivalent to
\frac{1}{p}+\frac{1}{q}>\frac{8}{15}. \tag{2}
If none of the numbers p,q, is equal to 2, then \frac{1}{p}+\frac{1}{q} \leqslant \frac{1}{3}+\frac{1}{5}=\frac{8}{15}, contradicting (2).
Assuming p=2 the condition (1) is written 15(2+q)>16q\;\;\Leftrightarrow\;\;q<30. So 3\leqslant q \leqslant 29 and q is a prime number. Then we have
\frac{1}{2}+\frac{1}{29}\leqslant \frac{1}{p}+\frac{1}{q}\leqslant \frac{1}{2}+\frac{1}{3}\;\Leftrightarrow\;\frac{31}{58}\leqslant \frac{p+q}{pq}\leqslant \frac{5}{6}
and multiplying the last inequalities by 6 \cdot 29=174 we get the conclusion.
\blacksquare
REMARK CiP
The condition (1) can also be written, after multiplying by 8, 64pq-120p-120q<0\;\Leftrightarrow
\Leftrightarrow \;(8p-15)(8q-15)<225. If p\geqslant 3, we have 8p-15 \geqslant 9 then we deduce 8q-15<\frac{225}{8p-15}\leqslant \frac{225}{9}=25, so 8q<40, q<5. We only have the possibility q=3 or q=2. When q=3, from (1) we deduce p<5. We can only have p=3 but then p=q, impossible. When q=2, from (1) we deduce p<30 and we find the answer.
\square end REM
Niciun comentariu:
Trimiteți un comentariu