Let A and B be distinct points.
LEMMA The following statements are equivalent:Proof CiP
(i)\Rightarrow(iii) As oriented segments, we have \frac{\overline{XA}}{\overline{XB}}=\kappa\;\Rightarrow\;\overrightarrow{XA}=\kappa \cdot \overrightarrow{XB}\;\Rightarrow
\Rightarrow\;\overrightarrow{OA}-\overrightarrow{OX}=\kappa(\overrightarrow{OB}-\overrightarrow{OX})\;\Rightarrow\;(1-\kappa)\overrightarrow{OX}=\overrightarrow{OA}-\kappa \cdot \overrightarrow{OB}
where O is an arbitrary point. We get the conclusion.
(ii)\Rightarrow(i) (1-\kappa)\overrightarrow{OX}=\overrightarrow{OA}-\kappa \cdot \overrightarrow{OB}\;\Rightarrow\;\overrightarrow{OA}-\overrightarrow{OX}=\kappa (\overrightarrow{OB}-\overrightarrow{OX}\;\Rightarrow\;\overrightarrow{XA}=\kappa \cdot \overrightarrow{XB}
so the vectors \overrightarrow{XA} and \overrightarrow{XB} are collinear and their orientation is according to the sign of \kappa, as the figure shows. Hence \overline {XA}=\kappa \cdot \overline{XB}.
(iii)\rightarrow(ii) obvious.
The Lemma is proved. To prove the corollary we note that
\overrightarrow{XA}=\kappa \cdot \overrightarrow{XB}\;\Leftrightarrow\;\overrightarrow{AX}=-\kappa \cdot \overrightarrow{XB}=-\kappa(\overrightarrow{AB}-\overrightarrow{AX})\;\Leftrightarrow \;(1-\kappa)\overrightarrow{AX}=-\kappa \cdot \overrightarrow{AB}
hence r=-\frac{\kappa}{1-\kappa}.
\blacksquare \blacksquare
Niciun comentariu:
Trimiteți un comentariu