Processing math: 3%

marți, 20 februarie 2024

Barycentric coordinate on the Straight Line

          Let A and B be distinct points. 

     LEMMA  The following statements are equivalent:
                  (i) points \;X,\;A,\;B\; are collinear and \frac{\overline{XA}}{\overline{XB}}=\kappa;
                 (ii) \overrightarrow{OX}=\frac{\overrightarrow{OA}-\kappa \cdot \overrightarrow{OB}}{1-\kappa} for a certain point O;
                (iii)  \overrightarrow{OX}=\frac{\overrightarrow{OA}-\kappa \cdot \overrightarrow{OB}}{1-\kappa} for any point O.


     Corollary  The following statements are equivalent:
          (\alpha)  points \;X,\;A,\;B\; are collinear and \frac{\overline{AX}}{\overline{AB}}=r;
          (\beta\overrightarrow{OX}=(1-r)\cdot \overrightarrow{OA}+r \cdot \overrightarrow{OB} for a certain/any point O.
 
     Remark  The formula from point (\beta) is still writte
X=(1-r)\cdot A+r \cdot B.

          Proof CiP

          (i)\Rightarrow(iii) As oriented segments, we have \frac{\overline{XA}}{\overline{XB}}=\kappa\;\Rightarrow\;\overrightarrow{XA}=\kappa \cdot \overrightarrow{XB}\;\Rightarrow

\Rightarrow\;\overrightarrow{OA}-\overrightarrow{OX}=\kappa(\overrightarrow{OB}-\overrightarrow{OX})\;\Rightarrow\;(1-\kappa)\overrightarrow{OX}=\overrightarrow{OA}-\kappa \cdot \overrightarrow{OB}

where O is an arbitrary point. We get the conclusion.

          (ii)\Rightarrow(i) (1-\kappa)\overrightarrow{OX}=\overrightarrow{OA}-\kappa \cdot \overrightarrow{OB}\;\Rightarrow\;\overrightarrow{OA}-\overrightarrow{OX}=\kappa (\overrightarrow{OB}-\overrightarrow{OX}\;\Rightarrow\;\overrightarrow{XA}=\kappa \cdot \overrightarrow{XB}

so the vectors \overrightarrow{XA} and \overrightarrow{XB} are collinear and their orientation is according to the sign of \kappa, as the figure shows. Hence \overline {XA}=\kappa \cdot \overline{XB}.

          (iii)\rightarrow(ii)  obvious.

     The Lemma is proved. To prove the corollary we note that

\overrightarrow{XA}=\kappa \cdot \overrightarrow{XB}\;\Leftrightarrow\;\overrightarrow{AX}=-\kappa \cdot \overrightarrow{XB}=-\kappa(\overrightarrow{AB}-\overrightarrow{AX})\;\Leftrightarrow \;(1-\kappa)\overrightarrow{AX}=-\kappa \cdot \overrightarrow{AB}

hence r=-\frac{\kappa}{1-\kappa}.

\blacksquare \blacksquare





Niciun comentariu:

Trimiteți un comentariu