Let $A$ and $B$ be distinct points.
LEMMA The following statements are equivalent:Proof CiP
(i)$\Rightarrow$(iii) As oriented segments, we have $\frac{\overline{XA}}{\overline{XB}}=\kappa\;\Rightarrow\;\overrightarrow{XA}=\kappa \cdot \overrightarrow{XB}\;\Rightarrow$
$$\Rightarrow\;\overrightarrow{OA}-\overrightarrow{OX}=\kappa(\overrightarrow{OB}-\overrightarrow{OX})\;\Rightarrow\;(1-\kappa)\overrightarrow{OX}=\overrightarrow{OA}-\kappa \cdot \overrightarrow{OB}$$
where $O$ is an arbitrary point. We get the conclusion.
(ii)$\Rightarrow$(i) $(1-\kappa)\overrightarrow{OX}=\overrightarrow{OA}-\kappa \cdot \overrightarrow{OB}\;\Rightarrow\;\overrightarrow{OA}-\overrightarrow{OX}=\kappa (\overrightarrow{OB}-\overrightarrow{OX}\;\Rightarrow\;\overrightarrow{XA}=\kappa \cdot \overrightarrow{XB}$
so the vectors $\overrightarrow{XA}$ and $\overrightarrow{XB}$ are collinear and their orientation is according to the sign of $\kappa$, as the figure shows. Hence $\overline {XA}=\kappa \cdot \overline{XB}$.
(iii)$\rightarrow$(ii) obvious.
The Lemma is proved. To prove the corollary we note that
$$\overrightarrow{XA}=\kappa \cdot \overrightarrow{XB}\;\Leftrightarrow\;\overrightarrow{AX}=-\kappa \cdot \overrightarrow{XB}=-\kappa(\overrightarrow{AB}-\overrightarrow{AX})\;\Leftrightarrow \;(1-\kappa)\overrightarrow{AX}=-\kappa \cdot \overrightarrow{AB}$$
hence $r=-\frac{\kappa}{1-\kappa}$.
$\blacksquare \blacksquare$
Niciun comentariu:
Trimiteți un comentariu