It is page 9 of the "SUPLIMENTUL cu EXERCIȚII al GMB N0 12/2023".
In translation
"S:L23.322. Show that if $\;a,\;b,\;c\in (0,\;\infty)$ and $a+b+c=1$, then
$$\frac{a+1}{\sqrt{a+bc}}\geqslant 2."$$
Solution CiP
We have the known inequality
$\frac{x+y}{\sqrt{xy}}\geqslant 2 \tag{1}$
where $x,\;y$ are positive real numbers. The sign $"="$ occurs in (1) if and only if $x=y.$
(The deduction of (1) is immediate from the equivalents
$$(\sqrt{x}-\sqrt{y})^2 \geqslant 0\;\Leftrightarrow\;x-2\sqrt{x}\cdot \sqrt{y}+y \geqslant 0\;\Leftrightarrow\;x+y\geqslant 2\sqrt{xy}\;\Leftrightarrow\;(1)\;)$$
Back to the problem, it results from the given conditions that $\;a,b,c<1$ (because, for example $a=1-b-c<1-0-0$ and $-b,-c<0$).
Then the numbers $x=1-b$ and $y=1-c$ are positive. But we have
$$a+1=1-b-c+1=(1-b)+(1-c)=x+y$$
and
$$a+bc=1-b-c+bc=(1-b)(1-c)=xy$$
and then the inequality (1) expresses exactly what the statement requires.
$\blacksquare$
Remark CiP The statement does not ask when the $"="$ sign occurs. We will answer, as a bonus.
The sign $"="$ occurs if and only if $(a,b,c)=(1-2t,t,t)$ with $t\in (0, \frac{1}{2}).$
Even the values $t=0$ (when $a=1,\;b=c=0$) and $t=\frac{1}{2}$ (when $a=0,\;b=c=\frac{1}{2}$) are admissible for the statement.
<end Rem>
..................................................................................................................................
As Mr. Konstantine ZELATOR used to us, a problem never appears alone. I am referring to his posts related to problems in the Crux Mathematicorum magazine (although he also has concerns about UFO-logy). As I announced in the title, we will also try to solve the other problems on the photographed page.
" S:L23.321. Let $ABCD$ be the convex quadrilateral whose diagonals
intersect at $O$. If $\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{AO}=\overrightarrow{BC}+\overrightarrow{DC}+\overrightarrow{OC}$, show that $ABCD$
is a parallelogram."
Solution CiP
It seems that no figure would be needed.
I did one, with a trembling hand.The relationship given between the six vectors is written, replacing some of them with the sum of two others, in the form
$(\overrightarrow{AO}+\overrightarrow{OB})+(\overrightarrow{AO}+\overrightarrow{OD})+\overrightarrow{AO}=(\overrightarrow{BO}+\overrightarrow{OC})+(\overrightarrow{DO}+\overrightarrow{OC})+\overrightarrow{OC}\;\Leftrightarrow$
$\Leftrightarrow\;3\overrightarrow{AO}+\overrightarrow{OB}+\overrightarrow{OD}=\overrightarrow{BO}+3\overrightarrow{OC}+\overrightarrow{DO}\;\Leftrightarrow$
$\Leftrightarrow \;3(\overrightarrow{AO}-\overrightarrow{OC})=2\overrightarrow{BO}+2\overrightarrow{DO}\;\Leftrightarrow\;$
$\Leftrightarrow\;3(\overrightarrow{AO}+\overrightarrow{CO})=2(\overrightarrow{BO}+\overrightarrow{DO}).\;\tag{1}$
On the left side of the relation (1) we have a sum of two vectors collinear with $\overrightarrow{AC}$, so the result will also be a vector collinear with $\overrightarrow{AC}$. On the right side of the relation (1) we have a sum of two vectors collinear with $\overrightarrow{BD}$, so the result will also be a vector collinear with $\overrightarrow{BD}$. Thus, equality (1) is possible only if
$$\overrightarrow{AO}+\overrightarrow{CO}=\overrightarrow{0}=\overrightarrow{BO}+\overrightarrow{DO}\;\Leftrightarrow$$
$\Leftrightarrow\;\overrightarrow{AO}=-\overrightarrow{CO}=\overrightarrow{OC}$ and $\overrightarrow{BO}=-\overrightarrow{DO}=\overrightarrow{OD}.$ But this means that point $O$ is both the midpoint of segment $[AC]$ and the midpoint of $[BD]$, thus $ABCD$ is a parallelogram.
$\blacksquare$
Here is another post by Konstantine ZELATOR
RăspundețiȘtergerehttps://www.academia.edu/114466843/A_number_theory_problem_Problem_4904_January_2024_issue_of_Crux_Mathematicorum_Find_all_pairs_of_prime_numbers_x_and_y_such_that_x_or_y_x_y_is_prime_and_x_x_y_y_is_divisible_by_x_y_?email_work_card=view-paper