Processing math: 0%

luni, 18 noiembrie 2024

SILBERBERG Gheorghe and a terrifying Problem : S.L.24.220

           The author, currently a teacher at UVT, was an international Olympian in mathematics. Originally from the city of Lugoj, he came with a bus full of students to the Timisoara County Olympics.

          Published in the Magazine(aka REVISTE) "GAZETA MATEMATICĂ : Supliment cu Exerciții", September 2024 at page 10. The statement is:

          "Let f:\mathbb{R} \rightarrow \mathbb{Z} be a monotone and surjective function with properties:

              (i) f(f(x))=f(x),\;\forall x\in \mathbb{R};

              (ii) f(2x)-f(x)=f\left ( x+\frac{1}{2}\right ),\; \forall x \in \mathbb{R}.

     a) Show that f\left ( k-\frac{1}{2^n} \right )=k-1, whatever k \in \mathbb{Z} and n \in \mathbb{N}.

     b) Determine the function f. "


ANSWER CiP

a) Induction on n\in \mathbb{N}

b) f(x)=[x] - the Floor function


                    Solution CiP

               The function f being surjective, for k\in\mathbb{Z} there exists x_k\in\mathbb{R} such that f(x_k)=k. Now k=f(x_k)\underset{(i)}{=}f(f(x_k))=f(k), so
f(k)=k,\;\;\forall k\in\mathbb{Z} \tag{1}

          We see from (1) that the function f is weakly increasing i.e. 

x<y\;\Rightarrow\;f(x)\leqslant f(y). \tag{1#}

          a) Equation

f\left (k-\frac{1}{2^n}\right )=k-1 \tag{2}

is true for n=0 according to (1). From (ii) we have

f\left (2\left (k-\frac{1}{2}\right)\right )-f\left (k-\frac{1}{2}\right )=f\left (k-\frac{1}{2}+\frac{1}{2}\right )\;\Leftrightarrow

\Leftrightarrow\;f(2k-1)-f\left (k-\frac{1}{2}\right )=f(k)\;\underset{(1)}{\Leftrightarrow}

\Leftrightarrow\;(2k-1)-f\left (k-\frac{1}{2}\right )=k\;\Rightarrow\;f\left (k-\frac{1}{2}\right )=k-1

so (2) is true for n=1.

{ edit nov 23, 2024: It seems that an inductive reasoning of (2) after n has no immediate chance of success. } 

          From (1) and (1\#) we obtain the important estimate

k\leqslant x<k+1\;\;\;\Rightarrow\;k\leqslant f(x)\leqslant k+1,\;\;k\in\mathbb{Z}. \tag{3}

          Let us assume that for a certain k_0\in \mathbb{Z} we have \color {Red}{f\left (k_0-\frac{1}{4}\right ) \neq k_0-1}. Hence, from (1#) follow f\left ( k_0-\frac{1}{4}\right )=k_0.

We have equality

f(2x+1)-f(2x)=f(x+1)-f(x) ,\;\;\forall x \in \mathbb{R}.\tag{4}

Indeed, applying (ii) to the underlined expressions

f(2x+1)-f(2x)=\underline{f \left ( 2 \left ( x+\frac{1}{2}\right ) \right )}-f(2x)=

=f\left (x+\frac{1}{2} \right )+f\left(x+\frac{1}{2}+\frac{1}{2} \right )-f(2x)=f(x+1)-\underline{f(2x)+f\left (x+\frac{1}{2} \right )}=

=f(x+1)-f(x).

Taking in (4) x=k_0-\frac{1}{4} we get f \left ( 2 \left (k_0-\frac{1}{4} \right )+1 \right )-f \left (2 \left( k_0-\frac{1}{4} \right ) \right )=f \left (k_0-\frac{1}{4}+1\right)-f(\left (k_0-\frac{1}{4} \right )\;\Leftrightarrow

\Leftrightarrow\;f\left (2k_0+1-\frac{1}{2} \right )-f \left (2k_0-\frac{1}{2}\right )=f\left (k_0-\frac{1}{4}+1 \right )-f\left (k_0-\frac{1}{4} \right ) \;\Leftrightarrow

\overset{(2)\;for\;n=1}{\underset{f(k_0-1/4)=k_0}{\Leftrightarrow}}\;2k_0-(2k_0-1)=f\left (k_0+1-\frac{1}{4}\right )-k_0

hence f\left (k_0+1-\frac{1}{4}\right )=k_0+1, so applying a inductive reasoning results

f\left (k-\frac{1}{4}\right )=k,\;\forall k\geqslant k_0,\;k\in \mathbb{Z}.\tag{5}

Applying (ii) again for k-\frac{1}{4} we get f\left (2\left (k-\frac{1}{4}\right) \right )-f\left (k-\frac{1}{4} \right )=f\left (k-\frac{1}{4}+\frac{1}{2} \right )

\Leftrightarrow\;f\left (2k-\frac{1}{2} \right )-f\left (k-\frac{1}{4} \right )=f\left ( k+\frac{1}{4} \right )\;\overset {(2)\;for\;n=1}{\underset{(5)}{\Leftrightarrow}}

\Leftrightarrow\;(2k-1)-k=f\left (k+\frac{1}{4} \right )\;\Leftrightarrow\;f\left (k+\frac{1}{4} \right )=k-1.

But then we get k=f(k)\leqslant f \left ( k+\frac{1}{4} \right )=k-1, FALSE.

 So f\left (k-\frac{1}{4} \right )=k-1,\; \forall k \in \mathbb{Z}   hence (2) is true for n=2.

{edit nov 27, 2024: This is how we can prove (2) by induction on n }

          Let the predicate depending on the variable n\in \mathbb{N} be

P(n)\;:\;\;"\forall k \in \mathbb{Z},\;f\left (k-\frac{1}{2^n} \right )=k-1"

     For n\in \{0,\;1,\;2\} we have P(n)-{\color{Green}{true}}.

     We now assume P(n)-true for some n and we will show that P(n+1) is also true, so according to mathematical induction it results \forall n\in \mathbb{N}\;P(n)-true.

     If, by absurdity, P(n+1) is false, it means that there exists k_0\in \mathbb{Z} such that f\left ( k_0-\frac{1}{2^{n+1}} \right ) \neq k_0-1. But, because of (3), we must then have 

f\left (k_0-\frac{1}{2^{n+1}}\right )=k_0. \tag{6}

Applying (ii) for x=k_0-\frac{1}{2^{n+1}} we get

f\left (2\left (k_0-\frac{1}{2^{n+1}}\right ) \right )-f\left ( k_0-\frac{1}{2^{n+1}}\right )=f\left ( k_0-\frac{1}{2^{n+1}}+\frac{1}{2} \right )\;\Leftrightarrow

\Leftrightarrow\;f\left ( 2k_0-\frac{1}{2^n}\right )-f \left (k_0-\frac{1}{2^{n+1}} \right )=f\left (k_0+\frac{1}{2}-\frac{1}{2^{n+1}} \right )\;\Leftrightarrow

\overset{P(n)-true}{\underset{(6)}{\Leftrightarrow}} \;(2k_0-1)-k_0=f\left (k_0+\frac{1}{2}-\frac{1}{2^{n+1}} \right )\;\;\Rightarrow

\Rightarrow\;\;\;f\left( k_0+\frac{1}{2}-\frac{1}{2^{n+1}} \right )=k_0-1.

But, since \frac{1}{2}-\frac{1}{2^{n+1}}>0, we have the inequalities 

k_0=f(k_0)\leqslant f\left (k_0+\frac{1}{2}-\frac{1}{2^{n+1}} \right )=k_0-1-FALSE.

          With this  "a)" is demonstrated.


          b) Let's show that for k\leqslant x <k+1 we have f(x)=k.

        If we choose a n>-log_2(k+1-x) we have

 -n<log_2(k+1-x)\;\;\Rightarrow\;\;2^{-n}<k+1-x\;\;\Rightarrow\;\;x<k+1-\frac{1}{2^n}.

Further k=f(k)\leqslant f(x)\leqslant f\left ( k+1-\frac{1}{2^n}  \right )\underset {(2)}{=}k, so f(x)=k. We got the answer.

\blacksquare




miercuri, 6 noiembrie 2024

A PROBLEM with the ISO_80000 SPECIFICATION

           "Find the real numbers x and y, if  \lg^2\frac{x}{y}=3\cdot \lg\frac{x}{2024}\cdot \lg \frac{2024}{y}."

[Wikipedia says that, according to the ISO 80000 specification(it costs a lot to read it, and time...), "\lg" should be the standard notation for the decimal logarithm log_{10}. ]

***  The sign "***" means that the problem does not have a known author, as it appears in the MAGAZINE(aka REVISTE) Supliment cu Exerciții, September 2024; proposed for the 10th grade on page 9 with number S.L24.211.


ANSWER CiP

x=2024,\;\;y=2024

Solution CiP

            Instead, we will solve the problem (...more than that, I don't venture to try...)
                    "Find the real numbers x and y, if \lg^2\frac{x}{y}=\lambda \cdot \lg\frac{x}{a} \cdot \lg \frac{a}{y}"

       a and \lambda being given positive real numbers, \color {Red}{\lambda <4}."


                                                         The ANSWER  will be \underline {x=a\;,\;y=a}


     The existence conditions of the problem, \frac{x}{y}>0,\; \frac{x}{a}>0,\;\frac{a}{y}>0 combined give x>0 and y>0.

     I will use the inequality 

4\cdot u \cdot v \leqslant (u+v)^2 \tag{1}

with the sign "=" in (1) if and only if u=v. Let A:=\lg\frac{x}{y};

A^2\underset{eq}{=}\lambda \cdot \lg\frac{x}{a}\cdot \lg\frac{a}{y}=\frac{\lambda}{4}\cdot 4\lg\frac{x}{a}\lg\frac{a}{y}\;\;\;\;\overset{(1)}{\underset{u=\lg\frac{x}{a}\;v=\lg\frac{a}{y}}{\leqslant}}\; \;\;\;\frac{\lambda}{4} \cdot \left ( \lg\frac{x}{a}+\lg \frac{a}{y} \right)^2 =

=\frac{\lambda}{4}\cdot \left [\lg \left (\frac{x}{a}\cdot \frac{a}{y}\right )\right ]^2=\frac{\lambda}{4}\cdot \lg^2 \frac{x}{y}=\frac{\lambda}{4}\cdot A^2,

hence A^2 \leqslant \frac{\lambda}{4} \cdot A^2\;\Leftrightarrow\;A^2\cdot (1-\frac{\lambda}{4})\leqslant 0 but which in the given condition \lambda <4 implies A=0.

     I got \lg\frac{x}{y}=0 so x=y and, from the equation, that one of the conditions \lg \frac{x}{a}=0 or \lg \frac{a}{y}=0 occurs, so x=a or y=a, (!)actually both.

\blacksquare

marți, 5 noiembrie 2024

PROBLEM E:16993 author Mihaela BERINDEANU, Bucharest

 "Let a,\;b\in \mathbb{N}^* be such that the number \frac{a+3}{b}+\frac{b+3}{a} is an integer.

If (a,b) is the greatest common divisor of the numbers a and b, then show that (a,b) \leqslant \sqrt{3(a+b)}."

          From the MAGAZINE(aka REVISTE) Gazeta Matematica seria B no.9/2024, page 426, the proposed problem for the 7th grade

          ANSWER CiP

             A case where the equal sign occurs is

a=6,\;b=6.

          Solution CiP

          Let k=\frac{a+3}{b}+\frac{b+3}{a}\in \mathbb{Z}, actually k\in\mathbb{N}^*.

After calculations, we have the relationship

a^2+b^2-kab+3a+3b=0.\tag{1}

If d=(a,b) then a=d\cdot a_1,\;b=d \cdot b_1 with (a_1,b_1)=1.Replacing these in (1) we have

d^2 \cdot a_1^2+d^2 \cdot b_1^2-k\cdot da_1\cdot db_1+3d\cdot a_1+3d\cdot b_1=0\;\Leftrightarrow

da_1^2+db_1^2-dka_1b_1+\underline{3(a_1+b_1)}=0.

In the last equation, the underlined term must be divisible by the number d, because all other terms are divisible by it. From here we get, with natural numbers

d \mid 3(a_1+b_1)\;\Rightarrow\;3(a_1+b_1)=d \cdot c \geqslant d\;\Rightarrow\;

\Rightarrow\;3\left ( \frac{a}{d}+\frac{b}{d} \right ) \geqslant d\;\Leftrightarrow \; 3(a+b)\geqslant d^2\;\;\Leftrightarrow\;(a,b)\leqslant \sqrt{3(a+b)}.

          For a=6 and b=6 we have \frac{a+3}{b}+\frac{b+3}{a}=\frac{9}{6}+\frac{9}{6}=3, and
d=(6,6)=6=\sqrt{36}=\sqrt{3\cdot(6+6)}.

 \blacksquare