The author, currently a teacher at UVT, was an international Olympian in mathematics. Originally from the city of Lugoj, he came with a bus full of students to the Timisoara County Olympics.
Published in the Magazine(aka REVISTE) "GAZETA MATEMATICĂ : Supliment cu Exerciții", September 2024 at page 10. The statement is:
"Let f:\mathbb{R} \rightarrow \mathbb{Z} be a monotone and surjective function with properties:
(i) f(f(x))=f(x),\;\forall x\in \mathbb{R};
(ii) f(2x)-f(x)=f\left ( x+\frac{1}{2}\right ),\; \forall x \in \mathbb{R}.
a) Show that f\left ( k-\frac{1}{2^n} \right )=k-1, whatever k \in \mathbb{Z} and n \in \mathbb{N}.
b) Determine the function f. "
ANSWER CiP
a) Induction on n\in \mathbb{N}
b) f(x)=[x] - the Floor function
Solution CiP
The function f being surjective, for k\in\mathbb{Z} there exists x_k\in\mathbb{R} such that f(x_k)=k. Now k=f(x_k)\underset{(i)}{=}f(f(x_k))=f(k), so
f(k)=k,\;\;\forall k\in\mathbb{Z} \tag{1}
We see from (1) that the function f is weakly increasing i.e.
x<y\;\Rightarrow\;f(x)\leqslant f(y). \tag{1#}
a) Equation
f\left (k-\frac{1}{2^n}\right )=k-1 \tag{2}
is true for n=0 according to (1). From (ii) we have
f\left (2\left (k-\frac{1}{2}\right)\right )-f\left (k-\frac{1}{2}\right )=f\left (k-\frac{1}{2}+\frac{1}{2}\right )\;\Leftrightarrow
\Leftrightarrow\;f(2k-1)-f\left (k-\frac{1}{2}\right )=f(k)\;\underset{(1)}{\Leftrightarrow}
\Leftrightarrow\;(2k-1)-f\left (k-\frac{1}{2}\right )=k\;\Rightarrow\;f\left (k-\frac{1}{2}\right )=k-1
so (2) is true for n=1.
{ edit nov 23, 2024: It seems that an inductive reasoning of (2) after n has no immediate chance of success. }
From (1) and (1\#) we obtain the important estimate
k\leqslant x<k+1\;\;\;\Rightarrow\;k\leqslant f(x)\leqslant k+1,\;\;k\in\mathbb{Z}. \tag{3}
Let us assume that for a certain k_0\in \mathbb{Z} we have \color {Red}{f\left (k_0-\frac{1}{4}\right ) \neq k_0-1}. Hence, from (1#) follow f\left ( k_0-\frac{1}{4}\right )=k_0.
We have equality
f(2x+1)-f(2x)=f(x+1)-f(x) ,\;\;\forall x \in \mathbb{R}.\tag{4}
Indeed, applying (ii) to the underlined expressions
f(2x+1)-f(2x)=\underline{f \left ( 2 \left ( x+\frac{1}{2}\right ) \right )}-f(2x)=
=f\left (x+\frac{1}{2} \right )+f\left(x+\frac{1}{2}+\frac{1}{2} \right )-f(2x)=f(x+1)-\underline{f(2x)+f\left (x+\frac{1}{2} \right )}=
=f(x+1)-f(x).
Taking in (4) x=k_0-\frac{1}{4} we get f \left ( 2 \left (k_0-\frac{1}{4} \right )+1 \right )-f \left (2 \left( k_0-\frac{1}{4} \right ) \right )=f \left (k_0-\frac{1}{4}+1\right)-f(\left (k_0-\frac{1}{4} \right )\;\Leftrightarrow
\Leftrightarrow\;f\left (2k_0+1-\frac{1}{2} \right )-f \left (2k_0-\frac{1}{2}\right )=f\left (k_0-\frac{1}{4}+1 \right )-f\left (k_0-\frac{1}{4} \right ) \;\Leftrightarrow
\overset{(2)\;for\;n=1}{\underset{f(k_0-1/4)=k_0}{\Leftrightarrow}}\;2k_0-(2k_0-1)=f\left (k_0+1-\frac{1}{4}\right )-k_0
hence f\left (k_0+1-\frac{1}{4}\right )=k_0+1, so applying a inductive reasoning results
f\left (k-\frac{1}{4}\right )=k,\;\forall k\geqslant k_0,\;k\in \mathbb{Z}.\tag{5}
Applying (ii) again for k-\frac{1}{4} we get f\left (2\left (k-\frac{1}{4}\right) \right )-f\left (k-\frac{1}{4} \right )=f\left (k-\frac{1}{4}+\frac{1}{2} \right )
\Leftrightarrow\;f\left (2k-\frac{1}{2} \right )-f\left (k-\frac{1}{4} \right )=f\left ( k+\frac{1}{4} \right )\;\overset {(2)\;for\;n=1}{\underset{(5)}{\Leftrightarrow}}
\Leftrightarrow\;(2k-1)-k=f\left (k+\frac{1}{4} \right )\;\Leftrightarrow\;f\left (k+\frac{1}{4} \right )=k-1.
But then we get k=f(k)\leqslant f \left ( k+\frac{1}{4} \right )=k-1, FALSE.
So f\left (k-\frac{1}{4} \right )=k-1,\; \forall k \in \mathbb{Z} hence (2) is true for n=2.
{edit nov 27, 2024: This is how we can prove (2) by induction on n }
Let the predicate depending on the variable n\in \mathbb{N} be
P(n)\;:\;\;"\forall k \in \mathbb{Z},\;f\left (k-\frac{1}{2^n} \right )=k-1"
For n\in \{0,\;1,\;2\} we have P(n)-{\color{Green}{true}}.
We now assume P(n)-true for some n and we will show that P(n+1) is also true, so according to mathematical induction it results \forall n\in \mathbb{N}\;P(n)-true.
If, by absurdity, P(n+1) is false, it means that there exists k_0\in \mathbb{Z} such that f\left ( k_0-\frac{1}{2^{n+1}} \right ) \neq k_0-1. But, because of (3), we must then have
f\left (k_0-\frac{1}{2^{n+1}}\right )=k_0. \tag{6}
Applying (ii) for x=k_0-\frac{1}{2^{n+1}} we get
f\left (2\left (k_0-\frac{1}{2^{n+1}}\right ) \right )-f\left ( k_0-\frac{1}{2^{n+1}}\right )=f\left ( k_0-\frac{1}{2^{n+1}}+\frac{1}{2} \right )\;\Leftrightarrow
\Leftrightarrow\;f\left ( 2k_0-\frac{1}{2^n}\right )-f \left (k_0-\frac{1}{2^{n+1}} \right )=f\left (k_0+\frac{1}{2}-\frac{1}{2^{n+1}} \right )\;\Leftrightarrow
\overset{P(n)-true}{\underset{(6)}{\Leftrightarrow}} \;(2k_0-1)-k_0=f\left (k_0+\frac{1}{2}-\frac{1}{2^{n+1}} \right )\;\;\Rightarrow
\Rightarrow\;\;\;f\left( k_0+\frac{1}{2}-\frac{1}{2^{n+1}} \right )=k_0-1.
But, since \frac{1}{2}-\frac{1}{2^{n+1}}>0, we have the inequalities
k_0=f(k_0)\leqslant f\left (k_0+\frac{1}{2}-\frac{1}{2^{n+1}} \right )=k_0-1-FALSE.
With this "a)" is demonstrated.
b) Let's show that for k\leqslant x <k+1 we have f(x)=k.
If we choose a n>-log_2(k+1-x) we have
-n<log_2(k+1-x)\;\;\Rightarrow\;\;2^{-n}<k+1-x\;\;\Rightarrow\;\;x<k+1-\frac{1}{2^n}.
Further k=f(k)\leqslant f(x)\leqslant f\left ( k+1-\frac{1}{2^n} \right )\underset {(2)}{=}k, so f(x)=k. We got the answer.
\blacksquare