joi, 29 octombrie 2020

Rédei László - Az euklideszi és nem euklideszi geometriák megalapozása F. Klein szerint -

 

Foundation of Euclidean and Non-Euclidean Geometries according to F. Klein, Volume 97

1st Edition

Author: L. Redei
Editors: I. N. Sneddon M. Stark
eBook ISBN: 9781483282701
Imprint: Pergamon
Published Date: 1st January 1968
Page Count: 410 
 
Vezi in DRIVE
Interesanta prezentarea here
 

Anca PRECUPANU - ANALIZĂ MATEMATICĂ : Funcții Reale (1976)

 Editura Didactică și Pedagogică, BUCUREȘTI, 1976


Vezi in DRIVE

Equations in the Set of Positive Rational Numbers

Ecuații în Mulțimea Numerelor Raționale Pozitive

 

          Este vorba de Ecuații de/reductibile_la Tipul $a\cdot x +b=0,$ unde $a,b \in \mathbb{Q_{+}}, x \in \mathbb{Q_{+}}$. Pratic, la acest nivel analizăm ecuația de forma $a\cdot x =b$. Soluția generală este $x=\frac{b}{a}$, în unele cazuri apare cerința $x \in \mathbb{N}$.



luni, 12 octombrie 2020

PROBLEM 4574 - CRUX MATHEMATICORUM vol. 46, no 8

En, p 415........................................................................................................................

 


 Fr, p 418.....................................................................................................................

 


ANSWER CiP

Equality $\Leftrightarrow x_{1}=\cdots=x_{n}=16$

 SOLUTION CiP

           LEMMA     If   $0\leqslant x <1$  then

(1)                                       $\frac{1}{1-x}\geqslant 1+4x^{2}$.

                               Equality if and only if  $x=0$ or $x=\frac{1}{2}$.

     Proof of Lemma

We perform simple calculation

$\frac{1}{1-x}-1-4x^{2}=\frac{x(1-2x)^{2}}{1-x} \geqslant 0$.

The conclusions result.

$\square $(LEMMA)

           Let $f(x)=\frac{1}{8-\sqrt{x}}$  where $0<x<64$. If we write

$f(x)=\frac{1}{8} \cdot \frac{1}{1-\frac{\sqrt{x}}{8}} \geqslant \frac{1}{8} \cdot(1+4(\frac{\sqrt{x}}{8})^{2})$

 where I applied the Lemma for $\frac {\sqrt{x}}{8}$ instead of $x$, then it turns out 

(2)                                $f(x) \geqslant \frac{1}{8}+\frac{x}{128}$.

      We put in the formula (2), one by one $x=x_{1}, x_{2}, \cdots x_{n}$ and add the obtained results.

So we have

$\sum_{i=1}^{n}f(x_{i})\geqslant \sum_{i=1}^{n}\left ( \frac{1}{8}+\frac{x_{i}}{128} \right )=\frac{n}{8}+ \frac{\sum_{i=1}^{n}x_{i}}{128}=\frac{n}{8}+\frac{16 \cdot n}{128}=\frac{n}{8}+\frac{n}{8}=\frac{n}{4}$

 
what needed to be shown.

$\blacksquare$

The equal sign occur when in (2) eqal signs occur, i.e. $\frac{\sqrt{x_{i}}}{8}=\frac{1}{2}$, so all $x_{i}=16.$

 

Raspunsul de confirmare



Thank you for sending us your solution for one of the problems found
in Crux Mathematicorum.  Our file server has received your submission
and the appropriate editor will be reviewing it in sequence or as
needed.


Below is a receipt confirming the submission you sent us.



Tracking Number: 10788
Received:        Mon Oct 12 16:50:40 2020

From:  Ciobanu Petre
       Scoala Gimnaziala "Samuil Micu" SADU
       Sibiu, Romania
Email: ptr.ciobanu@gmail.com

Type:  Solve a Crux (Numbered) Problem
       (problem 4574)

Files:
  yynwlsnl.pdf


Comments:
See my Blog
https://ogeometrie-cip.blogspot.com/2020/10/problem-4574-crux-mathematicorum-vol-46.html

Crux Mathematicorum crux@cms.math.ca

lun., 12 oct., 19:52


către eu

 =============

         Added April 7, 2021

 

           See their solution, V47n03, pages 159-160 (they give two solutions)

          The first solution starts from identity

$\frac{1}{1-t}=1+t^2+t+\frac{t^3}{1-t}$

 and for the interval $t\in ( 0,\;1 )$ we have 

$t+\frac{t^3}{1-t}\geq 3t^2\;(\Leftrightarrow t(2t-1)^2 \geq 0)$.

 N.CiP In fact, it is equivalent to inequality (1).

          

          The second solution uses that for $x \in (0, \; 64)$ we have

$\frac{1}{8-\sqrt{x}} \geq \frac {x+16}{128}\; \Leftrightarrow \sqrt{x}(\sqrt{x}-4)^2 \geq 0.$

N. CiP It is essentially the inequality (2).


= end added=

marți, 6 octombrie 2020

PROBLEM MA90 - Crux Mathematicorum V46N8

The statement of the problem

En (p 350)


 Fr(p 351)




ANSWER CiP

Solutions are the pairs $(x,y)=(k+1,k)\;\;and\;\; (2k+1,2k-1),\;\;\;k=1,2,\cdots$


SOLUTION CiP

          Let $z=x-y$. From

$\frac{y(x+y)}{x-y}=\frac{y(x-y)+2y^{2}}{x-y}=y+\frac{2y^{2}}{z}$

we see that $\frac{y(x+y)}{x-y}\in \mathbb{Z}$ $\Leftrightarrow$ $\frac{2y^{2}}{z}\in \mathbb{Z}$. Hence, if $z=1$ or $z=2$, we get respectively $x-y=1$, $x-y=2$.  In case $x-y=1$ we find $y=k,\;x=k+1$; in case $x-y=2$ we must $x,y$-odd numbers (otherwise $gcd(x,y)\neq1$) so $y=2k-1,\;x=2k+1$.

          Let now $z=x-y=2^{k}\cdot u$, $u$-odd number. 

$\frac{2y^{2}}{z}=\frac{y^{2}}{2^{k-1}\cdot u}$

If $k-1>0$, in order that the latter to be positive integer we must that $2 \mid y^{2}$ and $p \mid y^{2}$, where $p$ denote a prime divisor $p\geq 3$ of $u$. Hence $2 \mid y$ and $p \mid y$ and from $x=(x-y)+y=z+y$ it follow that $2 \mid x$ and $p \mid x$ which contradicts $gcd(x,y)=1$. So $k-1 \leq 0$ and $u=1$ and other solutions no longer exists.

$\blacksquare$

      Remark. The solutions are exactly those for which $\frac {x+y}{x-y}$ is a positive integer.


===========

Added April 7, 2021

          

          They notice more simply that $y$ and $x-y$ are coprime, so in identity $\frac{y(x+y)}{x-y}=y+\frac{2y^2}{x-y}$, $x-y$ must divide $2$, and so is equal $1$, or $2$.

        They express the answer 

$(x,y)=(u+1,u)\;,\;(v+2,v)$, $u-$positive integer, $v-$positive odd integer.

This coincides with our answer.

= end added=