Processing math: 2%

marți, 6 octombrie 2020

PROBLEM MA90 - Crux Mathematicorum V46N8

The statement of the problem

En (p 350)


 Fr(p 351)




ANSWER CiP

Solutions are the pairs (x,y)=(k+1,k)\;\;and\;\; (2k+1,2k-1),\;\;\;k=1,2,\cdots


SOLUTION CiP

          Let z=x-y. From

\frac{y(x+y)}{x-y}=\frac{y(x-y)+2y^{2}}{x-y}=y+\frac{2y^{2}}{z}

we see that \frac{y(x+y)}{x-y}\in \mathbb{Z} \Leftrightarrow \frac{2y^{2}}{z}\in \mathbb{Z}. Hence, if z=1 or z=2, we get respectively x-y=1, x-y=2.  In case x-y=1 we find y=k,\;x=k+1; in case x-y=2 we must x,y-odd numbers (otherwise gcd(x,y)\neq1) so y=2k-1,\;x=2k+1.

          Let now z=x-y=2^{k}\cdot u, u-odd number. 

\frac{2y^{2}}{z}=\frac{y^{2}}{2^{k-1}\cdot u}

If k-1>0, in order that the latter to be positive integer we must that 2 \mid y^{2} and p \mid y^{2}, where p denote a prime divisor p\geq 3 of u. Hence 2 \mid y and p \mid y and from x=(x-y)+y=z+y it follow that 2 \mid x and p \mid x which contradicts gcd(x,y)=1. So k-1 \leq 0 and u=1 and other solutions no longer exists.

\blacksquare

      Remark. The solutions are exactly those for which \frac {x+y}{x-y} is a positive integer.


===========

Added April 7, 2021

          

          They notice more simply that y and x-y are coprime, so in identity \frac{y(x+y)}{x-y}=y+\frac{2y^2}{x-y}, x-y must divide 2, and so is equal 1, or 2.

        They express the answer 

(x,y)=(u+1,u)\;,\;(v+2,v), u-positive integer, v-positive odd integer.

This coincides with our answer.

= end added=


Niciun comentariu:

Trimiteți un comentariu