sâmbătă, 28 noiembrie 2020

PROBLEM MA93 - Crux Mathematicorum V46N9

The statement of the problem

En(p. 436)

Fr(p. 437)

ANSWER CiP

$k=\frac{66}{7}$

Actually $x=2^{-\frac{48}{7}}, y=2^{\frac{36}{7}}, z=2^{\frac{78}{7}}$

 

          Solution CiP

     We use the formula ($a\in \mathbb{R},\;a>0,\;a\neq1$)

$log_{a^{k}}t^{k}=log_{a}t$, where $k\in \mathbb{R},\;k \neq 0,\;t>0$

which says that the logarithm of a number $t$ remains unchanged if the base of logarithm, $a$, and the number $t$ are raised to the same power $k$.

     The simultaneous equations in the statement are equivalent to (we take $k=\frac{1}{2}$ in the first term and $k=\frac{1}{3}$ in the second term of each equation)

$\begin{cases}log_{2}\sqrt{x}+log_{2} \sqrt[3]{yz}=2 \\log_{2}\sqrt{y}+ log_{2}\sqrt[3]{xz}=4 \\log_{2} \sqrt{z}+log_{2}\sqrt[3]{xy}=5 \end{cases}$

 and from here we obtain the equivalent equations

$\begin{cases}\sqrt{x}\cdot \sqrt[3]{yz}=2^{2}\\ \sqrt{y}\cdot \sqrt[3]{xz}=2^{4}\\ \sqrt{z} \cdot \sqrt[3]{xy}=2^{5} \end{cases}$                       (1).

     Suppose there are x, y and z for which the last equations are verified (otherwise any conclusion can be deduced). If we multiply the three equations we get

$\sqrt{xyz}\cdot \sqrt[3]{y^{2}z^{2}x^{2}}=2^{11}\Leftrightarrow (xyz)^{\frac{1}{2}+\frac{2}{3}}=2^{11}\Leftrightarrow xyz=2^{\frac{66}{7}}$

where do we get the answer.

      Replace in the first equation of (1) $yz=\frac{2^{\frac{66}{7}}}{x}$ we get

$x^{\frac{1}{2}}\cdot 2^{\frac{22}{7}}\cdot x^{-\frac{1}{3}}=2^{2}$ 

 where we get the value of $x=2^{-\frac{48}{7}}$. The same goes for $y=2^{\frac{36}{7}},\;z=2^{\frac{28}{7}}$ and these numbers check the initial equations.

$\blacksquare$

 

Raspunsul de confirmare a expedierii




Thank you for sending us your solution for one of the problems found
in Crux Mathematicorum.  Our file server has received your submission
and the appropriate editor will be reviewing it in sequence or as
needed.


Below is a receipt confirming the submission you sent us.



Tracking Number: 11004
Received:        Sat Nov 28 16:34:27 2020

From:  Petre Ciobanu
       Scoala Gimnaziala "Samuil Micu" SADU
       Sibiu, Romania
Email: ptr.ciobanu@gmail.com

Type:  Solve a MathemAttic Problem
       (problem MA093)

Files:
  Poblem_MA93_v46n9.pdf
  Sursa_latex_problema_MA93.doc


Comments:

Crux Mathematicorum crux@cms.math.ca

sâm., 28 nov., 18:36 (acum 2 zile)


către eu

 =================================================

Added May 19, 2021

     Good answer see V447n04, pages 174-175 

          They sum up the equations and get

$log_4{x}+log_4{y}+log_4{z}+log_8{(yz)}+log_8{(zx)}+log_8{(xy)}=11$

 $\Leftrightarrow\;\;log_4{(xyz)}+log_8{x^2y^2z^2)}=11$.

 If we substitute $xyz=2^k$ we get $k\cdot log_4{2}+2k \cdot log_8{2}=11$ and since $log_4{2}=\frac{1}{2},\;\;log_8{2}=\frac{1}{3}$ we find that $\frac{k}{2}+\frac{2k}{3}=11$ hence $k=\frac{66}{7}$.

 =end added=



Niciun comentariu:

Trimiteți un comentariu