Ecuson Universitetinin köməkçisi
Nişan orta məktəb müəllimi
Nəqliyyat kartı, servis
EPISODUL 2 :"Nobelurile" matematicii (16 OCT 2021)
la link : https://www.youtube.com/watch?v=2e6TZwOPKgc (YouTube)
sau https://www.facebook.com/Poligon-cu-Adrian-Manea-????? (Facebook)
Textul prezentarii :https://adrianmanea.xyz/pages/ep2-nobel.php
EPISODUL 1 : Matematica naturală... metaforic vorbind (02 OCT 2021)
la link : https://www.youtube.com/watch?v=jgMdCGs1sXI (YouTube)
sau https://www.facebook.com/Poligon-cu-Adrian-Manea-109800248130286 (Facebook)
Textul prezentarii : https://adrianmanea.xyz/pages/ep1-metaforic.php
EPISODUL 0 : Prezentare (30 SEP 2021)
la link : https://www.youtube.com/watch?v=MHurTIzRxcE
Textul prezentarii : https://adrianmanea.xyz/pages/ep0-prezentare.php
Titlul original: "Scrisori uitate ... de timp ..."
De la Virgil(~ius ?) IVANESCU, Dr._Tr._Severin
20.08.1990
19.11.1990
De la Marian DINCA, Bucuresti
01.09.1990
Student Bogdan DUMITRU (de la Institutul Militar de Transmisiuni SIBIU - U.M. 01606)
03.01.1994
Alexandru OANCEA, Timisoara
21.04.1994
Dan MILITA, Timisoara
11.04.1992
29.05.1992
See the book
KUCZMA Marcin Emil
144 Problems of the Austrian-Polish Mathematics Competition 1978-1993
The ACADEMIC DISTRIBUTION CENTER, Freeland, Maryland, 1994
The statement of the problem
"If $\;a\;,b\;,c\;$ are distinct real numbers whose sum is zero, prove that
$\left [\frac{b-c}{a}+\frac{c-a}{b}+\frac{a-b}{c} \right ]\cdot \left [ \frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right ]=9."\tag{1}$
SOLUTION CiP
Let's make the notations:
$A:=\frac{b-c}{a}+\frac{c-a}{b}+\frac{a-b}{c},$
$B:=\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}.$
When we bring to the same denominator, the numerator of the expression $A$ is
$A_1=bc(b-c)+ca(c-a)+ab(a-b).$ But from the condition $a+b+c=0$ we have
$$c=-a-b,\;\;-c=a+b. \tag{2}$$
Replacing $c$ in $A_1$ we get
$A_1\overset{(2)}{=}b\cdot (-a-b)(2b+a)+(-a-b)\cdot a(-2a-b)+ab(a-b)=$
$=(-2b^3-3ab^2-a^2b)+(2a^3+3a ^2b+ab^2)+(a^2b-ab^2)=$
$=(2a^3-2b^3)+(3a^2b-3ab^2)=2(a-b)(a^2+ab+b^2)+3ab(a-b)=$
$=(a-b)(2a^2+5ab+2b^2).$
Let's also note that $2a^2+5ab+2b^2=(2a+b)(a+2b)=(a+a+b)(a+b+b)\overset{(2)}{=}(a-c)(b-c).\tag{*}$
In conclusion we have
$$A=\frac{(a-b)(b-c)(a-c)}{abc}.\tag{3}$$
When we bring to the same denominator, the numerator of the expression $B$ is
$B_1=a(c-a)(a-b)+b(a-b)(b-c)+c(b-c)(c-a)\;\underset{(*)}{\overset{(2)}{=}}\;a(-2a-b)(a-b)+$
$+(ab-b^2)(a+2b)+(-a-b)(-2a^2-5ab-2b^2)=(-2a^3+a^2b+ab^2)+(a^2b+$
$+ab^2-2b^3)+(2a^3+7a^2b+7ab^2+2b^3)=9a^2b+9ab^2=9ab(a+b)\underset{(2)}{=}-9abc.$
In conclusion we have
$$B=\frac{-9abc}{(b-c)(c-a)(a-b)}.\tag{4}$$
Multiplying the relations $(3)$ and $(4)$ we obtain
$$[A]\cdot [B]=\frac{(a-b)(b-c)(a-c)}{abc} \cdot \frac{-9abc}{(b-c)(c-a)(a-b)}=9.$$
$\blacksquare$
REMARKS CiP
Pag 275 - En
Pag 276 - Fr
ANSWER CiP
$\log_5 12=\frac{2\cdot a+b}{1-a}$
Solution CiP
We have $\log_5 12 =\log_5(2^2 \cdot 3)=\log_5 2^2+\log_5 3$, so
$\log_5 12 =2\cdot \log_5 2 + \log_5 3. \tag{1}$
First, $\frac{1}{a}=\log_2 10=\log_2 (2\cdot 5)=\log_2 2 +\log_2 5=1+\frac{1}{\log_5 2}$ so
$\frac{1}{\log_5 2}=\frac {1}{a}-1$, whence it results
$\log_5 2 =\frac {a}{1-a}. \tag{2}$
Secondly, $\frac{1}{b}=\log_3 10 =\log_3 2 +\log_3 5=\frac{\log_{10} 2}{\log_{10} 3}+\frac{1}{\log_5 3}$, so $\frac{1}{\log_5 3}=\frac {1}{b}-\frac {a}{b}$, whence it results
$\log_5 3=\frac{b}{1-a}. \tag{3}$
Replacing formulas (2) and (3) in formula (1) we get the answer.
$\blacksquare$
REMARK CiP
More briefly $\log_5 12=\frac{\log_{10} 12}{\log_{10} 5}=\frac{\log_{10} 2^2 \cdot 3}{\log_{10} \frac{10}{2}}=\frac{\log_{10} 2^2 +\log_{10} 3}{\log_{10} 10-\log_{10} 2}=\frac{2\cdot \log_{10} 2 +\log_{10} 3}{1-\log_{10} 2}$ and we get the same answer.
$\blacksquare \blacksquare$
Confirmare trimitere
| 10:12 (acum 22 de minute) | ||
|