joi, 15 iulie 2021

PROBLEM MA127 CRUX MATHEMATICORUM V47 No 6

 Pag 275 - En


Pag 276 - Fr

ANSWER CiP 

$\log_5 12=\frac{2\cdot a+b}{1-a}$


     Solution CiP

          We have $\log_5 12 =\log_5(2^2 \cdot 3)=\log_5 2^2+\log_5 3$, so

$\log_5 12 =2\cdot \log_5 2 + \log_5 3. \tag{1}$

          First, $\frac{1}{a}=\log_2 10=\log_2 (2\cdot 5)=\log_2 2 +\log_2 5=1+\frac{1}{\log_5 2}$ so

$\frac{1}{\log_5 2}=\frac {1}{a}-1$, whence it results

$\log_5 2 =\frac {a}{1-a}. \tag{2}$

           Secondly, $\frac{1}{b}=\log_3 10 =\log_3 2 +\log_3 5=\frac{\log_{10} 2}{\log_{10} 3}+\frac{1}{\log_5 3}$, so $\frac{1}{\log_5 3}=\frac {1}{b}-\frac {a}{b}$, whence it results

$\log_5 3=\frac{b}{1-a}. \tag{3}$

          Replacing formulas (2) and (3) in formula (1) we get the answer.

$\blacksquare$

          

REMARK CiP

          More briefly $\log_5 12=\frac{\log_{10} 12}{\log_{10} 5}=\frac{\log_{10} 2^2 \cdot 3}{\log_{10} \frac{10}{2}}=\frac{\log_{10} 2^2 +\log_{10} 3}{\log_{10} 10-\log_{10} 2}=\frac{2\cdot \log_{10} 2 +\log_{10} 3}{1-\log_{10} 2}$ and we get the same answer.

$\blacksquare \blacksquare$

 

Confirmare trimitere

 

Thanks for sending your material to Crux!

achitat c-da/Corespondenta CRUX


Thank you for sending us your solution for one of the problems found
in Crux Mathematicorum.  Our file server has received your submission
and the appropriate editor will be reviewing it in sequence or as
needed.


Below is a receipt confirming the submission you sent us.



Tracking Number: 12831
Received:        Thu Jul 15 07:10:34 2021

From:  Petre Ciobanu
       Scoala Gimnaziala "Samuil Micu" SADU
       Sibiu, Romania
Email: ptr.ciobanu@gmail.com

Type:  Solve a MathemAttic Problem
       (problem MA127)

Files:
  LATEX_source_of_MA127.doc
  PROBLEM_MA127_CRUX_v47_n6.pdf


Comments:

Crux Mathematicorum crux@cms.math.ca

10:12 (acum 22 de minute)


către eu


Niciun comentariu:

Trimiteți un comentariu