Pag 275 - En
Pag 276 - Fr
ANSWER CiP
$\log_5 12=\frac{2\cdot a+b}{1-a}$
Solution CiP
We have $\log_5 12 =\log_5(2^2 \cdot 3)=\log_5 2^2+\log_5 3$, so
$\log_5 12 =2\cdot \log_5 2 + \log_5 3. \tag{1}$
First, $\frac{1}{a}=\log_2 10=\log_2 (2\cdot 5)=\log_2 2 +\log_2 5=1+\frac{1}{\log_5 2}$ so
$\frac{1}{\log_5 2}=\frac {1}{a}-1$, whence it results
$\log_5 2 =\frac {a}{1-a}. \tag{2}$
Secondly, $\frac{1}{b}=\log_3 10 =\log_3 2 +\log_3 5=\frac{\log_{10} 2}{\log_{10} 3}+\frac{1}{\log_5 3}$, so $\frac{1}{\log_5 3}=\frac {1}{b}-\frac {a}{b}$, whence it results
$\log_5 3=\frac{b}{1-a}. \tag{3}$
Replacing formulas (2) and (3) in formula (1) we get the answer.
$\blacksquare$
REMARK CiP
More briefly $\log_5 12=\frac{\log_{10} 12}{\log_{10} 5}=\frac{\log_{10} 2^2 \cdot 3}{\log_{10} \frac{10}{2}}=\frac{\log_{10} 2^2 +\log_{10} 3}{\log_{10} 10-\log_{10} 2}=\frac{2\cdot \log_{10} 2 +\log_{10} 3}{1-\log_{10} 2}$ and we get the same answer.
$\blacksquare \blacksquare$
Confirmare trimitere
Thanks for sending your material to Crux!
in Crux Mathematicorum. Our file server has received your submission
and the appropriate editor will be reviewing it in sequence or as
needed.
Below is a receipt confirming the submission you sent us.
Tracking Number: 12831
Received: Thu Jul 15 07:10:34 2021
From: Petre Ciobanu
Scoala Gimnaziala "Samuil Micu" SADU
Sibiu, Romania
Email: ptr.ciobanu@gmail.com
Type: Solve a MathemAttic Problem
(problem MA127)
Files:
LATEX_source_of_MA127.doc
PROBLEM_MA127_CRUX_v47_n6.pdf
Comments:
| 10:12 (acum 22 de minute) | ||
|
Niciun comentariu:
Trimiteți un comentariu