Loading web-font TeX/Main/Regular

miercuri, 7 iulie 2021

PROBLEM OC531 - CRUX MATHEMATICORUM, V47n5

 Pag 238 - En


Pag 239 - Fr


ANSWER CiP

If 7 \mid k then solutions are (k,0),\;(k,k),\;(\frac{3k}{7},-\frac{k}{7}),

and, if any, the pairs (x_1,y_1),\;(k-x_1+y_1,y_1).

If 7 \nmid k then the solution (\frac{3k}{7},-\frac{k}{7})(although rational),

 is not made up of integers; the others remain valid.

Examples

 If k=-4, the equation has solutions

(-4,0),\;(-4,-4),\;(-1,-3),\;(-6,-3).

If k=7, the equation has solutions

(7,0),\;(7,7),\;(3,-1),\;(3,6),\;(10,6). 

 

 

Solution CiP

          There are two pairs (x,y) that obviously check the equation: (k,0) and (k,k).

          The given equation is equivalent to

x^2-xy+2y^2-kx-ky=0\; ;\; x+y \neq 0. \tag{1} \label{eq1}

           Let (x_1,y_1) be a solution of equation (1), with the condition x_1+y_1 \neq 0. This means that the equation with unknow x

x^2-(k+y_1)x+2y_1^2-ky_1=0 \tag{2}

has the solution x=x_1. Being of the second degree for  x, she has another solution x_2 which, according to Viete's Relations, she checks x_1+x_2=k+y_1, so x_2=k-x_1+y_1.

     For the pair (x_2,y_1) to fit the given problem it must be x_2+y_1 \neq 0. But x_2+y_1=0 \; \Leftrightarrow \;k-x_1+2y_1=0 \; \Leftrightarrow \; x_1=k+2y_1, and writing that k+2y_1 check equation (2) we immediately get y_1=0, then x_1=k.

          So for any solution (x_1,y_1) \neq (k,0) of the equation (1) we get another solution by the transformation

(x_1,y_1)\; \mapsto \; (k-x_1+y_1,y_1). \tag{3}

       We have (k,k) \overset{(3)}{\mapsto} (k-k+k,k)=(k,k), so by transforming (3) we do not get a NEW solution. Let's look for all the solutions that remain invariant through this transformation, so k-x_1+y_1=x_1, whence y_1=2x_1-k. If we write that (x_1,2x_1-k) check equation (1)

x_1^2-x_1(2x_1-k)+2(2x_1-k)^2-kx_1-k(2x_1-k)=0

\Leftrightarrow \;7x_1^2-10kx_1+3k^2=0 we get x_1=k or x_1=\frac{3k}{7}. In the secon case y_1=-\frac{k}{7}. So the only invariant pairs by transformation (3) are (k,k) and (\frac{3k}{7}, -\frac{k}{7}).

          So, if k \;\vdots \; 7 (means "k is divisible by 7"), then the equation (1) has three solutions (k,0),\; (k,k),\;(\frac{3k}{7},-\frac{k}{7}) to which, if there are others (x_1,y_1), an even number of solutions (x_1,y_1) and (k-x_1+y_1,y_1) is added. In total an odd number.

     Otherwise (7 \nmid k) the solution (\frac{3k}{7},-\frac{k}{7}) does not consits of integers, and the number of solutions is even.

\blacksquare


Trimitere

Imaginea rezolvarii

Sursa LATEX





Confirmare trimitere



Thank you for sending us your solution for one of the problems found
in Crux Mathematicorum.  Our file server has received your submission
and the appropriate editor will be reviewing it in sequence or as
needed.


Below is a receipt confirming the submission you sent us.



Tracking Number: 12749
Received:        Wed Jul  7 08:52:45 2021

From:  Petre Ciobanu
       Scoala Gimnaziala "Samuil Micu" SADU
       Sibiu, Romania
Email: ptr.ciobanu@gmail.com

Type:  Solve an Olympiad Corner Problem
       (problem OC531)

Files:
  LATEX_source_for_PROBLEM_OC_531.doc
  Problem_OC_531.png


Comments:
I could not get a PDF of this document

Crux Mathematicorum crux@cms.math.ca

11:53 (acum 7 ore)


către eu


Niciun comentariu:

Trimiteți un comentariu