Processing math: 100%

marți, 19 ianuarie 2021

Problem E:15756 GMB 6-7-8/2020, pag 369

 


 Proposed for the eighth grade. In translation:

          " Let n \geqslant 2 be a natural number and x a nonzero real number so that \frac{x^{2}+1}{x}=\sqrt{2n+1}. Prove that \frac{x^{4}+(n+1)x^{2}+1}{x^{2}} is a natural number, divisible by 3."

 

 ANSWER CiP

\frac{x^{4}+(n+1)x^{2}+1}{x^{2}}=3\cdot n

 

Solution CiP

            Squaring given relation x+\frac{1}{x}=\sqrt{2n+1} it results

x^{2}+2 \cdot x \cdot \frac{1}{x}+ \frac{1}{x^{2}}=2n+1 \Rightarrow x^{2}+\frac{1}{x^{2}}=2n+1-2 \Rightarrow

\Rightarrow x^{2}+(n+1)+\frac{1}{x^{2}}=2n-1+(n+1) \Leftrightarrow \frac{x^{4}+(n+1)x^{2}+1}{x^{2}}=3 \cdot n.

\blacksquare

 

GAZETA MATEMATICĂ Seria B N0 9/2020

Vezi in DRIVE

 

Vezi ERATA



 

 

 

 

marți, 12 ianuarie 2021

Problem E:15743 GMB 6-7-8/2020, pag 367


 Proposed for the seventh grade. In translation:

          "Let a and b be real numbers such that a+b, a^{3}+b^{3} and a+b^{2} are nonzero rational numbers.

     a) Give an example of irrational numbers a and b that check the relationships in the statement.

     b) Prove that a^{2}+b is a rational number."

 

ANSWER CiP

a) a=\frac{1+\sqrt{2}}{2},   b=\frac{1-\sqrt{2}}{2};

          a family of numbers with the indicated properties is

 a=\frac{1}{2}+\frac {1}{2}\cdot \sqrt{d}, b=\frac{1}{2}-\frac{1}{2} \cdot \sqrt{d},

          with d rational number that is not a perfect square.

 

Solution CiP

           a) We calculate that the values indicated in the answer check the conditions of

 the problem:

a+b=(\frac{1}{2}+\frac{1}{2}\cdot \sqrt{d})+(\frac{1}{2}-\frac{1}{2}\cdot \sqrt{d})=1,

a^{3}+b^{3}=\left ( \frac{1}{2}+\frac{1}{2} \cdot \sqrt{d} \right )^{3}+\left (\frac{1}{2}-\frac{1}{2} \cdot \sqrt{d} \right )^{3}=

=(\frac{1}{8}+\frac{3}{8}\sqrt{d}+\frac{3}{8}d +\frac{1}{8}d\sqrt{d})+(\frac{1}{8}-\frac{3}{8}\sqrt{d}+\frac{3}{8}d-\frac{1}{8}d \sqrt{d})=\frac{1}{4}+\frac{3}{4}d,

a+b^{2}=(\frac{1}{2}+\frac{1}{2}\cdot \sqrt{d})+(\frac{1}{2}-\frac{1}{2}\cdot \sqrt{d})^{2}=

=\frac{1}{2}+\frac{1}{2} \cdot \sqrt{d}+(\frac{1}{4}-\frac{1}{2} \cdot \sqrt{d}+\frac{1}{4}\cdot d)=\frac{3}{4}+\frac{1}{4}d.


          b) Let's write down three numbers r,s,p with the property

\begin{cases}a+b=r\;\;\;\;\;(1)\\a^{3}+b^{3}=p\;\;(2)\;\;\;\;\;\;\;r,p,s \in \mathbb{Q}\setminus \{0 \}\\a+b^{2}=s\;\;\;\;(3) \end{cases}

           Note that a necessary condition for the existence of numbers a,b is

(4)                    r-s \leqslant \frac{1}{4}.

 Because, assuming that a,b exist, we have

-\left ( b-\frac{1}{2} \right )^{2}\leqslant 0 \;\Leftrightarrow \; b-b^{2} \leqslant \frac{1}{4}\;\Leftrightarrow \; (a+b)-(a+b^{2}) \leqslant \frac{1}{4}\;\overset{(1),(3)}\Leftrightarrow\;r-s\leqslant \frac{1}{4}.

         

                A "negligent" demonstration

     
          Using the equation a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2}), it results from (2) and (1),    a^{2}-ab+b^{2}=\frac{p}{r} \Rightarrow (a+b)^{2}-3ab=\frac{p}{r} \Rightarrow ab=\frac{r^{2}}{3}-\frac{p}{3r} \in \mathbb{Q}.

Further \Rightarrow a^{2}+b^{2}=\frac{p}{r}+ab=\frac{p}{r}+\frac{r^{2}}{3}-\frac{p}{3r}=\frac{r^{2}}{3}+\frac{2p}{3r} \in \mathbb{Q}.

     From (3), s=a+b^{2} \overset{(1)}=(r-a)+(\frac{r^{2}}{3}+\frac{2p}{3r}-a^{2})=\frac{r^{2}}{3}+r+\frac{2p}{3r}-(a^{2}+b)  

\Rightarrow  a^{2}+b=\frac{r^{2}}{3}+r+\frac{2p}{3r}-s \in \mathbb{Q}.

\blacksquare

 

                Remarks at the demonstration

           \blacklozenge The numbers r,\;p,\;s that fulfill the relationships (1)-(3) can be independent ...


          \blacklozenge Eliminating a from the equations (1) and (3) leads to the equation b^{2}-b=s-r. From here we get two values for b, and finally

(5)          a=\frac{2r-1\pm \sqrt{1-4r+4s}}{2}    b=\frac{1 \mp \sqrt{1-4r+4s}}{2}.

(From \pm, \mp the upper signs are taken once, then the lower ones.)

 

           \blacklozenge A relationship between r,\;p,\;s is obtained by replacing formulas (5) in formula (2)

p=a^{3}+b^{3}=(r-\frac{1}{2}\pm \frac{\sqrt{1-4r+4s}}{2})^{3}+(\frac{1}{2}\mp \frac{\sqrt{1-4r+4s}}{2})^{3}.

Without completing the calculations, we find at some point

(6)   p=(r-\frac{1}{2})^{3}\pm \frac{3}{2}(r^{2}-r)\sqrt{1-4r+4s}+\frac{1}{8}+\frac{3}{4}(1-4r+4s).

     If a and b are irrational numbers, then 1-4r+4s is not the square of a rational number (see (5)). Then (6) shows that, in order to have p \in \mathbb{Q} it must r^{2}-r=0, so r=1 (the case r=0 being excluded from the statement).


          \blacklozenge We see now from (5) that condition (4) is also sufficient for the equations (1)-(3) to admit real solutions. However, this only happens if the value of p is given by (6); the numbers r and s can be given arbitrarily (of course respecting the relation (4)).
 
 
          \blacklozenge  We return to case r=1, the only one in which the equations (1)-(3) admit irrational numbers as solutions.
 
\begin{cases}a+b=1\;\;\;\;(7)\\a^{3}+b^{3}=p\;(8)\\a+b^{2}=s\;\;\;(9) \end{cases}

 We have in (9) condition s \geqslant \frac{3}{4} (deduced from (4)). The values a and b given now by (5) are

\left \{ a,\;b \right \}=\left \{ \frac{1\pm \sqrt{4s-3}}{2} \right \},

 and the calculation that led to relation (6) provides us p=3s-2. (Because s \geqslant \frac {3}{4} we have p \geqslant \frac{1}{4}.) 

     Therefor, we have the (!equivalent) possibilities

\begin{cases} a+b=1\\a^{3}+b^{3}=3s-1\;\;\;s\geqslant \frac{3}{4}\\a+b^{2}=s \end{cases}

or 

\begin{cases}a+b=1\\a^{3}+b^{3}=p\;\;\; p\geqslant \frac{1}{4}\\a+b^{2}=\frac{p+2}{3} \end{cases}

with solutions

 \left \{a,\;b \right \}=\left \{\frac{1\pm \sqrt{4s-3}}{2}\right \}=\left \{\frac{1\pm \sqrt{\frac{4p-1}{3}}}{2} \right \}.

 

           \blacklozenge p depending on r and s

          It is the relation (6), completed

(6^{bis})     p=r^{3}-\frac{3}{2}r^{2}-\frac{3}{4}r+1+3s \pm \frac{3}{2}(r^{2}-r)\sqrt{1-4r+4s}\;.

 

          \blacklozenge s depending on p and r

           We will show below that we have

(10)          s=\frac{1}{6}r^{2}+\frac{1}{2}r+\frac{p}{3r}\pm \frac{1}{2}(r-1)\sqrt{\frac{4p-r^{3}}{3r}}.

      For this, consider only equations (1) and (2).From these we have obtained befor

a+b=r     a\cdot b=\frac{r^{3}-p}{3r}.

 So a and b will be the roots of a quadratic equation x^{2}-(a+b)\cdot x +ab=0. We find

\left \{ a,b \right \}=\left \{ r\pm \sqrt{\frac{4p-r^{3}}{2}} \right \}.

With these values we calculate a+b^{2} and obtain the relation (10).


          \blacklozenge r depending on p and s

      (11)     r^{6}-3r^{4}(s-1)-r^{3}(2p+9s)+9r^{2}(s^{2}+p)-3rp(2s+1)+p^{2}=0.

          This is obtained by writing the given relationships (1)-(3) in the form \begin{cases}b=r-a\\b^{2}=s-a\\b^{3}=p-a^{3}.\end{cases}

 From the last two relations we obtain successively 

\begin{cases} (r-a)^{2}=s-a\\(r-a)^{3}=p-a^{3} \end{cases} \Leftrightarrow \begin{cases}a^{2}-(2s-1)\cdot a +r^{2}-s=0\\3r\cdot a^{2}-3r^{2} \cdot a +r^{3}-p=0. \end{cases}

It is known that two quadratic equations

\alpha \cdot x^{2}+\beta \cdot x+\gamma =0 and \alpha_{1} \cdot x^{2}+\beta_{1} \cdot x +\gamma_{1}=0

 have a common root if, and only if

(\alpha \cdot \gamma_{1}-\gamma \cdot \alpha_{1})^{2}=(\alpha \cdot \beta_{1}-\beta \cdot \alpha_{1})\cdot (\beta \cdot \gamma_{1}-\gamma \cdot \beta_{1}).

Here it is written

(12)                    (2r^{3}-3rs+p)^{2}=3r(r-1)(r^{4}+r^{3}-3r^{2}s+2rp-p)

 from which it results (11).


          \blacklozenge   We can also arrange the formula (12) in the forms

9r^{2} \cdot s^{2}-3r(r^{3}+3r^{2}+2p) \cdot s+r^{6}+3r^{4}-2r^{3}p+9r^{2}p-3rp+p^{2}=0,

 where we find equation (10) again,

or,

p^{2}-p\cdot r(2r^{2}-9r+6s+3)+r^{2}[r^{4}-3r^{2}(s-1)-9rs+9s^{2}]=0,

where we find again (6^{bis}).

\blacklozenge  \blacklozenge  \blacklozenge