Processing math: 100%

marți, 19 ianuarie 2021

Problem E:15756 GMB 6-7-8/2020, pag 369

 


 Proposed for the eighth grade. In translation:

          " Let n \geqslant 2 be a natural number and x a nonzero real number so that \frac{x^{2}+1}{x}=\sqrt{2n+1}. Prove that \frac{x^{4}+(n+1)x^{2}+1}{x^{2}} is a natural number, divisible by 3."

 

 ANSWER CiP

\frac{x^{4}+(n+1)x^{2}+1}{x^{2}}=3\cdot n

 

Solution CiP

            Squaring given relation x+\frac{1}{x}=\sqrt{2n+1} it results

x^{2}+2 \cdot x \cdot \frac{1}{x}+ \frac{1}{x^{2}}=2n+1 \Rightarrow x^{2}+\frac{1}{x^{2}}=2n+1-2 \Rightarrow

\Rightarrow x^{2}+(n+1)+\frac{1}{x^{2}}=2n-1+(n+1) \Leftrightarrow \frac{x^{4}+(n+1)x^{2}+1}{x^{2}}=3 \cdot n.

\blacksquare

 

Niciun comentariu:

Trimiteți un comentariu