See the book here
In Cap. 8 (Miscellaneous Problems) at page 236, Problem 47
SOLUTION CiP
The numbers $x,\;y,\;z$ are the roots of a third degree equation, with unknown $w$
(1) $w^{3}-(x+y+z)\cdot w^{2}+(xy+yz+zx)\cdot w -xyz=0$
(according to Vieta's formulas). From the given conditions, and we can write the second one $\frac{yz+zx+xy}{xyz}=0$, the equation (1) is
(2) $w^{3}-x \cdot y \cdot z=0$.
REMARK CiP
Numbers that check the given conditions must be complex numbers. (Because $\sum x^{2}=(\sum x)^{2}-2 \cdot \sum xy =0$ and $xyz \neq 0$.)
From relationships
\begin{cases}x+y=-z\\\frac{1}{x}+\frac{1}{y}=-\frac{1}{z} \end{cases}
we deduce
$x+y=-z$, $x \cdot y =z^{2}$
so $x$ and $y$ are the roots of the quadratic equation with unknown $t$
$t^{2}+z \cdot t +z^{2}=0$
that is $\frac{-1\pm\imath \sqrt{3}}{2}\cdot z$. So the general family of solutions of the given equations is
$(\frac{-1+\imath \sqrt{3}}{2}\cdot z\;,\; \frac{-1-\imath \sqrt{3}}{2} \cdot z\;,\;z)\;\;\;z \in \mathbb{C}\setminus \{ 0 \}$.
$\square$
Desigur, în solutii generalã de mai sus avem $z \neq 0$.
RăspundețiȘtergereAm corectat
Ștergere