Processing math: 100%

marți, 16 februarie 2021

Getting to know a new problem book ...

 

See the book here

           In Cap. 8 (Miscellaneous Problems) at page 236, Problem 47


 SOLUTION CiP


           The numbers x,\;y,\;z are the roots of a third degree equation, with unknown w

(1)                     w^{3}-(x+y+z)\cdot w^{2}+(xy+yz+zx)\cdot w -xyz=0

 (according to Vieta's formulas). From the given conditions, and we can write the second one \frac{yz+zx+xy}{xyz}=0, the equation (1) is

(2)                       w^{3}-x \cdot y \cdot z=0.

From (2) we get
w^{4}=xyz \cdot w,          w^{5}=xyz \cdot w^{2}          w^{6}=xyz \cdot w^{3}.
 
We put x,\; y,\; z in turn instead of w in the last relation, we sum up the obtained results in and we get
\sum x^{6}=xyz \cdot \sum x^{3}.
 It follows from here \frac{x^{6}+y^{6}+z^{6}}{x^{3}+y^{3}+z^{3}}=xyz.
\blacksquare 
 

      REMARK CiP

           Numbers that check the given conditions must be complex numbers. (Because \sum x^{2}=(\sum x)^{2}-2 \cdot \sum xy =0 and xyz \neq 0.)

           From relationships

\begin{cases}x+y=-z\\\frac{1}{x}+\frac{1}{y}=-\frac{1}{z} \end{cases}

 we deduce  

x+y=-z,          x \cdot y =z^{2}

so x and y are the  roots of the quadratic equation with unknown t

t^{2}+z \cdot t +z^{2}=0

 that is \frac{-1\pm\imath \sqrt{3}}{2}\cdot z. So the general family of solutions of the given equations is

(\frac{-1+\imath \sqrt{3}}{2}\cdot z\;,\; \frac{-1-\imath \sqrt{3}}{2} \cdot z\;,\;z)\;\;\;z \in \mathbb{C}\setminus \{ 0 \}.

 \square

 

2 comentarii: