See the book here
In Cap. 8 (Miscellaneous Problems) at page 236, Problem 47
SOLUTION CiP
The numbers x,\;y,\;z are the roots of a third degree equation, with unknown w
(1) w^{3}-(x+y+z)\cdot w^{2}+(xy+yz+zx)\cdot w -xyz=0
(according to Vieta's formulas). From the given conditions, and we can write the second one \frac{yz+zx+xy}{xyz}=0, the equation (1) is
(2) w^{3}-x \cdot y \cdot z=0.
REMARK CiP
Numbers that check the given conditions must be complex numbers. (Because \sum x^{2}=(\sum x)^{2}-2 \cdot \sum xy =0 and xyz \neq 0.)
From relationships
\begin{cases}x+y=-z\\\frac{1}{x}+\frac{1}{y}=-\frac{1}{z} \end{cases}
we deduce
x+y=-z, x \cdot y =z^{2}
so x and y are the roots of the quadratic equation with unknown t
t^{2}+z \cdot t +z^{2}=0
that is \frac{-1\pm\imath \sqrt{3}}{2}\cdot z. So the general family of solutions of the given equations is
(\frac{-1+\imath \sqrt{3}}{2}\cdot z\;,\; \frac{-1-\imath \sqrt{3}}{2} \cdot z\;,\;z)\;\;\;z \in \mathbb{C}\setminus \{ 0 \}.
\square
Desigur, în solutii generalã de mai sus avem z \neq 0.
RăspundețiȘtergereAm corectat
Ștergere