Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

joi, 17 februarie 2022

Karede Bir Açı ve Bir ... Hiçbir Yerden Uçurtma

           An Angle in a Square and a Kite Out of Nowhere

          Uçurtma, akademik dilde Deltoid olarak da adlandırılır.

          Starting from a geometry problem and the solution that Hasan Ata offered, we formulate the following problem:

          " Let ABCD be a square and an angle \angle EAF with E \in ]BC[,\;F \in ]CD[. Prove that 

\measuredangle EAF=45^{\circ}\;\Leftrightarrow\;EF=BE+DF."

Solution CiP

                    Let \measuredangle EAF=45^{\circ}

               Rotate the triangle ABE with  90^{\circ} clockwise around point A and obtain the triangle ADG. We have \measuredangle EAG=90^{\circ}, AE=AG and DG=BE.

  Since \measuredangle FAG=90^{\circ}-45^{\circ}=45^{\circ}=\measuredangle EAF , it follows that the line AF  is the angle bisector of the \angle EAG in the isosceles triangle AEG so it is the perpendicular bisector of the segment [EG], hence FG=FE, so EF=FG=DG+DE=BE+DF.

q.e.d.

           Reciprocally, let EF=BE+DF

       The same rotation now shows us that FG=FE so quadrilateral AEFG is a kite.

  Hence line FA is simultaneously angle bisector of \angle EFG and \angle EAG. Because \measuredangle EAG=90^{\circ} it follow \measuredangle EAF=\frac{90^{\circ}}{2}=45^{\circ}. 

q.e.d.

\blacksquare

 

 

 

luni, 14 februarie 2022

Три проблема с приблизително една и съща конфигурация

           Това са броеве 1334, 1363 и 1366, публикувани тук http://gogeometry.com/.

 

           Problem 1334 (reformulation)

            Let E be a point on the side ]BC[ of the square ABCD. [AF],\;\;F \in ]CD[ is the angle bisector of the \angle DAE. Prove that AE=BE+DF.

    
In relation to the original figure, with the changed notes

we have equal angles \angle BCE = \angle DHE (from the parallelism of the CB and AH lines), and \angle BCE=\angle EBG, hence \angle EBG = \angle GHB so BGH is an isosceles triangle and then BG=a.

           Let's get back to our figure.

If we note x^{\circ}=\measuredangle AEB and we build the triangle ADG so that \Delta ABE \equiv \Delta ADG (basically, we rotate the triangle ABE with  90^{\circ} around point A, counterclockwise), we have \measuredangle AGD=x^{\circ} and [AG] \equiv [AE].

     Now we calculate \measuredangle BAE=90^{\circ}-x^{\circ}=\measuredangle GAD and from \angle AEB \equiv \angle DAE (due to the parallelism BE \parallel AD) we have \measuredangle DAF=x^{\circ}, \;\measuredangle DAF=\frac{x^{\circ}}{2}. Now \measuredangle GAF=\measuredangle GAD +\measuredangle DAF =(90^{\circ}-x^{\circ})+\frac{x^{\circ}}{2}=90^{\circ}-\frac{x^{\circ}}{2}. In the triangle AGF: \measuredangle AFG=180^{\circ}-\measuredangle AGF-\measuredangle GAF=180^{\circ}-x^{\circ}-(90^{\circ}-\frac{x^{\circ}}{2})=90^{\circ}-\frac{x^{\circ}}{2}

     From \angle AFG \equiv \angle GAF it turns out that triangle AFG is isosceles, with GA=GF=a+b.

\blacksquare

 

         Problem 1363

                   Solution CiP

          From FC \perp BC,\;FG\perp BE and fact that BF is bisector of \angle CBE it follow FC=FG so the congruence \Delta BCF \equiv \Delta BGF and hence BG=BC. But AB=BC so triangle ABG is isosceles.

      Let x^{\circ}=\measuredangle CBF=\measuredangle FBG, then \underline{\measuredangle GFB}=\measuredangle CFB=\underline{90^{\circ}-x^{\circ}}.

Now, \measuredangle ABG=90^{\circ}-2x^{\circ}, so \measuredangle BAG=\underline{\measuredangle BGA}=\underline{45^{\circ}+x^{\circ}}.

      We calculate now \measuredangle FGH=180^{\circ}-\measuredangle FGA=180^{\circ}-\measuredangle FGB-\measuredangle BGA=

=180^{\circ}-90^{\circ}-(45^{\circ}+x^{\circ})=45^{\circ}+x^{\circ}.

But \measuredangle BFG=\measuredangle FHG +\measuredangle FGH (as the outer angle of the triangle FGH) so

\measuredangle FHG=\measuredangle BFG-\measuredangle FGH=(90^{\circ}-x^{\circ})-(45^{\circ}-x^{\circ})=45^{\circ}.

 \blacksquare

 

            Problem 1366


                Solution CiP

             Consider the square ABCD and the point E on ]AD[.

Line BE intersects the circle once again at point E' and the bisector BF of the angle \angle CBE intersects the circle again at point F'. Let BE \cap AF' ={J}.

      We will prove that [BA] \equiv [BJ], so J=G and so F'=H. (The fact that BG is equal to the side of the square results easily from the congruence of the triangles \Delta BCF \equiv \Delta BGF.)

        First notice that point F' is the middle of the arc \overset{\frown}{C_DE'}\;:\;\overset{\frown}{CF'} \equiv \overset{\frown}{F'E'}.

      Now applying the calculation formulas of the angles inscribed in the circle, respectively the angle with the tip inside the circle, we obtain 

\measuredangle BAJ=\measuredangle BAF'=\frac{\overset{\frown}{B_CF'}}{2}=\frac{\overset{\frown}{BC}+\overset{\frown}{CF'}}{2}=\frac{90^{\circ}+\overset{\frown}{F'E'}}{2}=\frac{\overset{\frown}{AB}+\overset{\frown}{E'F'}}{2}=\measuredangle BJA.

 It turns out that the triangle ABJ is isosceles, with BA=BJ.

\blacksquare


           Remark Problem 1363 is now an immediate consequence of this result: \measuredangle AHB=\frac{\overset{\frown}{AB}}{2}=\frac{90^{\circ}}{2}=45^{\circ}.

 

 


         


 

 

 

 

 

 

 

 

GAZETA MATEMATICĂ Seria B N0 12/2021

vezi in DRIVE