Processing math: 100%

joi, 17 februarie 2022

Karede Bir Açı ve Bir ... Hiçbir Yerden Uçurtma

           An Angle in a Square and a Kite Out of Nowhere

          Uçurtma, akademik dilde Deltoid olarak da adlandırılır.

          Starting from a geometry problem and the solution that Hasan Ata offered, we formulate the following problem:

          " Let ABCD be a square and an angle \angle EAF with E \in ]BC[,\;F \in ]CD[. Prove that 

\measuredangle EAF=45^{\circ}\;\Leftrightarrow\;EF=BE+DF."

Solution CiP

                    Let \measuredangle EAF=45^{\circ}

               Rotate the triangle ABE with  90^{\circ} clockwise around point A and obtain the triangle ADG. We have \measuredangle EAG=90^{\circ}, AE=AG and DG=BE.

  Since \measuredangle FAG=90^{\circ}-45^{\circ}=45^{\circ}=\measuredangle EAF , it follows that the line AF  is the angle bisector of the \angle EAG in the isosceles triangle AEG so it is the perpendicular bisector of the segment [EG], hence FG=FE, so EF=FG=DG+DE=BE+DF.

q.e.d.

           Reciprocally, let EF=BE+DF

       The same rotation now shows us that FG=FE so quadrilateral AEFG is a kite.

  Hence line FA is simultaneously angle bisector of \angle EFG and \angle EAG. Because \measuredangle EAG=90^{\circ} it follow \measuredangle EAF=\frac{90^{\circ}}{2}=45^{\circ}. 

q.e.d.

\blacksquare

 

 

 

Niciun comentariu:

Trimiteți un comentariu