Loading [MathJax]/extensions/TeX/mathchoice.js

miercuri, 17 august 2022

Problem 12335 from AMM 7/2022

 



          LEMMA Let P(X)=\sum_{j=0}^pa_jX^{p-j} be a polynomial with integer coefficients, divisible by the polynomial X^2+\mu X+\nu\;\in \mathbb{Z}[X]. Then the quotient of the division P\;:\;(X^2+\mu X+\nu) has integer coefficients.

          Proof of Lemma

               Let the result of the division be Q(X)=P(X) \;:\;(X^2+\mu X+\nu)=\sum_{j=0}^{p-2}b_jX^{p-2-j}.

 Identifying the coefficients of the indeterminates X^k,\;k=p,\;p-1,\cdots,\;1,\;0 in the equation P(X)=(X^2+\mu X+\nu)\cdot Q(X), i.e.

\sum_{j=0}^pa_jX^{p-j}=(X^2+\mu X+\nu)(b_0X^{p-2}+b_1X^{p-3}+\cdots+b_{p-3}X+b_{p-2})

we get equations

\begin{cases}a_0=b_0\\ a_1=b_1+\mu b_0\\ a_2=b_2+\mu b_1+\nu b_0\\\;\vdots \\a_j=b_j+\mu b_{j-1}+\nu b_{j-2}\\\;\vdots \\a_{p-2}=b_{p-2}+\mu b_{p-3}+\nu b_{p-4}\\a_{p-1}=\mu b_{p-2}+\nu b_{p-3}\\a_p=\nu b_{p-2}\;.\end{cases}

Obviously that  b_0=a_0,\;b_1=a_1-\mu b_0,\;\cdots,\;b_{p-2}=a_{p-2}-\mu b_{p-3}-\nu b_{p-4}\in \mathbb{Z}.

end \square Lemma


SOLUTION of PROBLEM {unfinished}

               Demonstration_CiP of UNIQUENESS

               If a certain number z admits two representations

z=\sum_{k=0}^m\varepsilon_k(1+\imath)^k=\sum_{l=0}^n\varepsilon'_l(1+\imath)^l\;\;\;\;\varepsilon,\;\varepsilon' \in \{0,1\}

then there is a relationship of this kind

\sum_{j=0}^p \delta_j(1+\imath)^j=0\;,\;\;\delta_j\in \{-1,0,1\}. \tag{1}

We will prove that in (1), all \delta_j must be 0.

     We assume that the opposite occurs. If p is the largest index for which \delta_j \neq 0, then, possibly changing the \pm signs, we obtain that the equation (renumbering also the coefficients)

X^p+\delta_1X^{p-1}+\cdots+\delta_{p-1}X+\delta_p=0,\;\;\;\delta_j \in \{-1,0,1\} \tag{2}

has the root 1+\imath. The equation being with real number coefficients, it will also have the root 1-\imath (and with the same order of multiplicity). So we have divisibility

X^p+\delta_1 X^{p-1}+\cdots +\delta_{p-1}X+\delta_p\;\vdots\;(X-1-\imath)(X-1+\imath).

Then there exists a polynomial Q(X)\in \mathbb{Z}[X] (cf. LEMMA) with the property

(X^2-2X+2)\cdot Q(X)=X^p+\cdots+\delta_{p-1}X+\delta_p.

Taking X=0 into this equality, we will have 2\cdot Q(0)=\delta_p\;. So \delta_p\; \vdots \;2 and how \delta_p=0,\;\pm 1 it results \delta_p=0

     Dividing the equation (2) by X, we get the new equation

X^{p-1}+\delta_1X^{p-2}+\cdots +\delta_{p-2}X+\delta_{p-1}=0,

 having a root 1+\imath; it turns out the same that \delta_{p-1}=0, and so on...

\blacksquare


               Demonstration_CiP of implication 

z can be represented \;\Rightarrow\;\imath-z\; cannot

              Let's assume that both z and \imath-z admit the representations

z=\sum_{k=0}^n\varepsilon_k(1+\imath)^k,\;\;\imath-z=\sum_{l=0}^m\varepsilon_l'(1+\imath)^l,\;\varepsilon_k,\varepsilon_l' \in \{0,1\}.

\Rightarrow\;\imath =\sum_{k=0}^n \varepsilon_k(1+\imath)^k+\sum_{l=0}^m\varepsilon_l'(1+\imath)^l

\Rightarrow\;\imath =\sum_{j=0}^p \alpha_j(1+\imath)^j,\;\alpha_j \in \{0,1,2\}. \tag{3}

We consider the polynomial

\sum_{j=0}^p\alpha_j(1+X)^j-X,\;\;\alpha_j \in \{0,1,2\}.

The relation (3) tells us that this polynomial has root \imath, and being with real coefficients it will also have root -\imath. So the polynomial is divisible by X^2+1, that is, there exists the polynomial S(X) \in \mathbb{Z}[X] (cf. LEMMA) such that

(X^2+1)S(X)=\sum_{j=0}^p\alpha_j(1+X)^j-X.

Taking X=-1 into the above equation, we get 2\cdot S(-1)=1, impossible in integer numbers.

\blacksquare \blacksquare


          Conclusion. So far we have demonstrated 

z can be represented \Rightarrow\;\imath-z cannot

or equivalent

\imath-z can be represented \Rightarrow\;z cannot.


It remains to be shown 

\imath-z cannot be represented \;\Rightarrow\;\;z can it

or equivalent

z cannot be represented \;\Rightarrow\;\imath -z can it.

By reduction to the absurd, we should obtain a contradiction from the fact that z and \imath -z cannot be represented.[???]

         \ddaggerDigression. On a page of James Propp (one of the authors of the problem) I found a discussion of the same phenomenon. Here’s a picture (looks like a Dragon) showing all 256 of the Gaussian integers expressible in the form

 a(1+i)7 + b(1+i)6 + c(1+i)5 + d(1+i)4 + e(1+i)3 + f(1+i)2 + g(1+i)1 + h(1+i)0 

where each of the numbers a,b,c,d,e,f,g,h is either 0 or 1. 

          I think the following note is the key to solving the problem:

[Note: After this article “went to press” Tom Karzes and Steve Lucas and I proved that the set of nonexpressible Gaussian integers is the set of expressible Gaussian integers rotated by 180 degrees about the complex number i/2.] 

     In reality, the 180^{\circ}-rotation around \imath /2 is the symmetry with respect to this point. As you can see in the figure, the point reflection of A w.r.t. point S is the point A'.



          See also two entries in Wikipedia.

         https://en.m.wikipedia.org/wiki/Complex-base_system

         https://en.m.wikipedia.org/wiki/Complex-base_system#Base_.E2.88.921_.C2.B1_i

 end \ddaggerDigression


miercuri, 10 august 2022

Kolejny problem z podzielnością

                     Na stronie 301 mamy Problem 1

In translation

"Show that for every natural number n, the number 4^n+15n-1 is divisible by 9."

          So in the previous post, we solved it by two methods.

          I. By Mathematical Induction, let c_n=4^n+15n-1. For n=0 we have c_0=0 \;\vdots\;9.

Assuming c_n\;\vdots\;9, we have c_{n+1}=4^{n+1}+15\cdot(n+1)-1=4\cdot 4^n+15n+14=

=4(c_n-15n+1)+15n+14=4c_n-45n+18\;\vdots\;9 because each of the terms 4c_n,\;45n,\;18 is divisible by 9, so so is their sum.

          II. With Newton's Binomial Formula

4^n=(3+1)^n=\sum_{k=0}^{n-2}\binom{n}{k}\cdot3^{n-k}\cdot1^k+\binom{n}{n-1}\cdot3^1\cdot 1^{n-1}+1^n=9\cdot a+3n+1

because in the first sum all the terms contain a factor 3^p,\;p=n,\;n-1,\dots,\;2.

\Rightarrow\; c_n=(9a+3n+1)+15n-1=9a+18n=9(a+2n)\;\vdots\;9.

\blacksquare





duminică, 7 august 2022