Processing math: 9%

miercuri, 29 martie 2023

En identitet ikke så overraskende som det virker, fra magasinet FIBONACCI QUARTERLY / An identity not as surprising as it seems, from the magazine FIBONACCI QUARTERLY

NORVEGIAN

NORVEGIANĂ


          The identity

\sqrt{5}+\sqrt{22+2\sqrt{5}}=\sqrt{11+2\sqrt{29}}+\sqrt{16-2\sqrt{29}+2\sqrt{55-10\sqrt{29}}}

appears in the magazine FIBONACCI QUARTERLY, vol 12, no. 3 (1974) at pages 271 and 280.

          We will show a simple proof of this identity.

          It can be observed, with a little luck, that

16-2\sqrt{29}+2\sqrt{55-10\sqrt{29}}=

=5+(11-2\sqrt{29})+2\sqrt{5}\sqrt{11-2\sqrt{29}}=

=\left (\sqrt{5}+\sqrt{11-2\sqrt{29}}\;\right )^2.

The right-hand side of the identity will then be equal to

\sqrt{11+2\sqrt{29}}+\sqrt{5}+\sqrt{11-2\sqrt{29}}\;.

Although it is usually said that "there is no formula for the sum of two radicals", we can boldly apply the formula \sqrt{x}+\sqrt{y}=\sqrt{x+y+2\sqrt{x}\sqrt{y}}, and obtain

\sqrt{11+2\sqrt{29}}+\sqrt{11-2\sqrt{29}}=

=\sqrt{(11+2\sqrt{29})+(11-2\sqrt{29})+2\sqrt{(11+2\sqrt{29})(11-2\sqrt{29})}}=

=\sqrt{22+2\sqrt{11^2-4\cdot 29}}=\sqrt{22+2\sqrt{5}}.

     Then, the result of this calculation is \sqrt{5}+\sqrt{22+2\sqrt{29}}, which coincides with the left member of the identity

\blacksquare


          Remark 

          This solution was obtained by Mr. Constantin Telteu, to a post of mine on Facebook.


Niciun comentariu:

Trimiteți un comentariu