Processing math: 0%

miercuri, 7 iunie 2023

The Equation of a Straight Line in different Analytical Geometries


          We denote with \mathbb{R} the set of real numbers. Sometimes it means the field of reals , with the usual operations of addition "+" and multiplication "\cdot"\;; we note its elements with small Greek letters \;\alpha,\;\beta,\;\gamma \dots

          With \mathbb{C} we denote the set of complex numbers z=\alpha +\imath \beta; its elements are usually denoted by small Latin letters \;a,\;b,\;c\dots The complex number \alpha -\imath \beta, written \bar{z} is the complex conjugate of   z. We denote \alpha=\Re(z) and \beta=\Im(z) respectively the real part and the imaginary part of z.

          By \mathbb{A}^2 we denote the real 2-dimensional affine space or plane ; in it we consider a Cartesian coordinate system (affine frame) \mathscr{R}=(O;\;\mathbf{e}_1,\mathbf{e}_2), where O is a fixed point and \;\mathbf{e}_1,\mathbf{e}_2 a base of (real) vectorial space \mathbb{R}^2. Endowed with a dot product he becomes the Euclidean plane \mathbb{E}^2; in this particular case we prefer the base vectors to be orthonormal.


               In the Proposition below, \mathbb{C} is considered as the 2-dimensional real affine space \mathbb{R}\times \mathbb{R} with the affine frame \mathscr{S}=(O;\;1,\imath). The point O is the same as the one in \mathscr{R} above.


           %1.     PROPOSITION  (i)  The straight line in \mathbb{E}^2 that corresponds in the

                               frame \mathscr{R} to the equation

\alpha \cdot x+\beta \cdot y+\gamma=0\;\;\;(\alpha,\beta)\neq (0,0) \tag{1}

                                has in the frame \mathscr{S} of \mathbb{C} the equation

\frac{\alpha+\imath \beta}{2}\cdot z+\frac{\alpha-\imath \beta}{2} \cdot \bar{z}+\gamma=0.\tag{2}

                                  (ii) Converselly, to any equation in the frame \mathscr{S} of the form 

a\cdot z+b \cdot \bar{z}+c=0,\;\;0\neq b=\bar{a},\;c=\bar{c} \tag{3}

                                corresponds a straight line which in the frame \mathscr{R} has the equation

(2\cdot \Re\;a)\cdot x+(2\cdot \Im\;a)\cdot y +c=0.\tag{4}


          The most general case of an equation representing a straight line is given in the following theorem. (|a|=\sqrt{\alpha^2+\beta^2} means the modulus of the complex number a=\alpha+\imath \cdot \beta.)

               %2. THEOREM  The equation

a\cdot z+b \cdot \bar {z}+c=0,\;\;\;(a,b)\neq (0,0) \tag{5}

           represents a straight line if and only if

 |a|=|b|\;\;and\;\;\bar {a} \cdot c=b \cdot \bar{c}. \tag{6}

               %3 CORROLARY  (i) If  c=0 then equation (5) represents a line iff

 |b|=|a|. \tag{6i}

                                                  (ii) If c \neq 0 then equation (5) represents a line iff

 b \cdot \bar{c}=\bar{a} \cdot c.\tag{6ii}

                        Indeed, if c=0, then the second condition in (6) is automatically satisfied. If c\neq 0, then |b|=\left |\frac{\bar{a}\cdot c}{\bar{c}} \right |=\frac{|\bar{a}|\cdot |c|}{|\bar{c}|}=|\bar{a}|=|a|, and the conditions (6) are both fulfilled.

\square

      Some authors prefer to write the equation of a line in the form

b \cdot z-\bar{b}\cdot \bar{z}+c=0, c-purely imaginary. \tag{7}

     The equation (3) is called the self-adjoint form. Since we can multiply equation (5) by an arbitrary non-zero complex number, any of the forms is equally justified when c \neq 0.

     Indeed, given a straight line (6) with c\neq 0

a\cdot  z+b\cdot \bar{z}+c=0

\underset{(6ii)}{\Rightarrow}\;\;a \cdot z+\frac{\bar{a}c}{\bar{c}} \cdot \bar{z}+c=0\;\;\Rightarrow

\Rightarrow\;\;a\bar{c}\cdot z+\bar{a}c \cdot \bar{z}+c\bar{c}=0;

because c\bar{c}=|c|^2 is real number, this is the self-adjoint form. Further, multiplying the last equation by \imath

\imath a\bar{c} \cdot z+\imath \bar{a}c \cdot \bar{z}+\imath |c|^2=0

and writing \;b:=\imath a\bar{c}, because \imath \bar{a}c=(-\bar {\imath})\overline{(\bar{a})}\bar{c}=-\overline{\imath \bar{a}c}, we get the form (7).

Let's note that, also in the case c=0, an equation az+b\bar{z}=0 in which the numbers a and b seem arbitrary (satisfying the condition (6i) |a|=|b|), can be brought to the self-adjoint form. If we multiply this equation by \bar{a}+\bar{b}, we get the equation 

a_1 \cdot z +b_1 \cdot \bar{z}=0 \tag{8}

in which a_1=a(\bar{a}+\bar{b}) and b_1=b(\bar{a}+\bar{b}). But the condition (6i) is also expressed as a \cdot \bar{a}=b \cdot \bar{b} and then we have

\bar{a_1}=\overline {a\bar{a}+a\bar{b}}=\bar{a}a+\bar{a}b=\bar{b}b+\bar{a}b=b(\bar{b}+\bar{a})=b_1.

     Example: The equation of the straight line z+\imath \cdot \bar{z}=0, after multiplying by 1-\imath, turns into (1-\imath)z+(\imath +1)\bar{z}=0, obviously a self-adjoint form (3).

          So (3) is the general form of the equation of a straight line.


{Last edit: 7/29/2023}

Text_ciorna :

\mathscr{R}

\mathbf{e}

and the FFF conditions are both fulfilled.

End_ciorna


marți, 6 iunie 2023

एक पत्रिका जो दुनिया भर में घूमती है // A magazine that travels the world

           I mentioned this magazine before in the post of Wednesday, January 25, 2023.

           I received an email in the last days from a professor from Calcutta (India), interested in some Romanian magazines. He also asked me some details about "Revista Matematica din Timisoara". Unfortunately, I haven't scanned many numbers yet, but I hope that in the future I will be able to post the entire collection I have.