luni, 24 iunie 2024

48-63-69 TRIANGLE : Să trăiești NAȘULE !! // Long live Godmother !!

           I used to follow this geometry blog

           I actually contributed to the publication of an problem (#963).

           The title is and is not a joke: I named my blog "ogeometrie" in the hope that those who will access "gogeometry" will also find me.

The figure above is a triangle with angles $\measuredangle {A}=48^{\circ},\;\measuredangle{B}=63^{\circ},\;\measuredangle{C}=69^{\circ}.$

          This triangle is the subject of Problem #1561. Today (2024-06-24) two solutions are already published. GregMarch 3, 2024 at 3:27 AM  and  Sumith PeirisMarch 5, 2024 at 11:48 AM. I also tried the solution, but no matter how much "angle chasing" I did, it was not enough. It is proven from the already published solutions that we must also appeal to a circumscribed circle.

Lemma ni Euler // Euler's lemma

 (filipineza) 


                    The name "EULER's Lemma" is given by me. This property of the circumcenter and the orthocenter is used in the demonstration of the "Circle of the Nine Points Theorem".


                    THEOREM (EULER's Lemma)
                    "We denote by O, G and H respectively the center of the 
                circumscribed circle, the center of gravity and the orthocenter
                 of a triangle ABC.
                     Let A' be the midpoint of side [BC]. We have equality
$$AH=2\cdot OA'. " \tag {e}$$
               Rem CiP
                In reality we have more, the relationship between vectors takes place
$$\overrightarrow{AH}=2 \cdot \overrightarrow{OA'}. \tag {E}$$

                    CiP Proof (following the text from the images at the beginning) 
               First we demonstrate
               Lemma 1 Two triangles with respectively parallel sides are similar.
                   Proof of Lemma_1
                  Let $A_1B_1C_1$ and $A_2B_2C_2$ be two triangles having
$$A_1B_1 \parallel A_2B_2\;,\;\;A_1C_1 \parallel A_2C_2\;,\;\;B_1C_1 \parallel B_2C_2\;. \tag{$\pi$}$$
Since [the angles] $\angle B_1A_1C_1,\;\angle B_2A_2C_2$ have respectively parallel sides, we have
$$\angle A_1 \equiv \angle A_2\;\;\;or \;\;\;\measuredangle A_1+\measuredangle A_2=180^{\circ} \tag {$\lambda_A$}$$
Analogously we have
$$\angle B_1 \equiv \angle B _2\;\;\;or \;\;\; \measuredangle B_1+\measuredangle B_2=180^{\circ} \tag{$\lambda_B$};$$
$$\angle C_1 \equiv \angle C_2\;\;\;or \;\;\; \measuredangle C_1+\measuredangle C_2=180^{\circ} . \tag{$\lambda_C$}$$
If in two of the relations $(\lambda_{A,B,C}$ the case of supplementarity would appear, e.g.
$$\measuredangle A_1+\measuredangle A_2=180^{\circ}=\measuredangle B_1+\measuredangle B_2$$
then
$\measuredangle C_1+\measuredangle C_2=180^{\circ}-(\measuredangle A_1+\measuredangle B_1)+180^{\circ}-(\measuredangle A_2+\measuredangle B_2)=(180^{\circ}-\measuredangle A_1-\measuredangle A_2)+(180^{\circ}-\measuredangle B_1-\measuredangle B_2)=0$
impossible. 
          Therefore, in two of the relations $(\lambda_{A,B,C})$ we have $"\equiv "$ (and implicitly, based on the sum of the angles of a triangle we have $"\equiv "$ in the remaining case as well). The triangles will be similar.  
$\square $<end Proof of L_1>

             Lemma 2 Two triangles with respective perpendicular sides are similar.
               Same justification.

              In [the triangles] $\Delta AHB$ and $\Delta A'OB'$ we have

$$AH \perp BC \perp OA'$$
so $AH \parallel AB$; analogous $BH \parallel OB'$. Then $A'B' \parallel AB$ from the middle theorem
        With the Lemma 1 result $\Delta AHB \sim \Delta A'OB'$, having the similarity ratio $\frac{AB}{A'B'}=2.$ So also $\frac{AH}{A'O}=2.$

               Remark CiP The fact that (e) also occurs as vectors  (i.e. (E)) results from the observations:

($\alpha$)   $O,\;H\;\in Int \Delta ABC\;\;\Leftrightarrow\;\widehat{BAC},\;\widehat{ABC},\;\widehat {BCA}\;<90^{\circ}$
($\beta$)   $O,\;H\;\in Ext \Delta ABC\;\;\Leftrightarrow\;\widehat{A}\;>90^{\circ}\;or\;\widehat{B}\;>90^{\circ}\;or\; \widehat{C}\;>90^{\circ}$
($\gamma$)  $H=A,\;O=A'\;\;\Leftrightarrow\;\widehat{A}=90^{\circ}.$
Moreover, in the case $(\beta)$ we can specify:
          $\widehat{BAC}>90^{\circ}\;\Rightarrow\;H\in Int \{opposite\;angle\;at\;the\;apex\;with\; \angle BAC\}$
                                                                                   and $O\in \{the\;half-plane\;determined\;by\;the\; line\;BC,\;which\;does\;\underline{not}\;contain\;the\;vertex\;A \}$
$\blacksquare \blacksquare$

Bulgarian Mathematics Magazine for Students


          You can find information here.

An archive with the magazine's collection can be found here.

You can find other Mathematics magazines here.


miercuri, 19 iunie 2024

МАТЕМАТИКА В ШКОЛЕ 1989. 𝒩𝑜 5

 Click on the image to download. The password to open the file is :  ogeometrie  

Other issues of the magazine can be found here.

Other Mathematics Magazines can be found here.



marți, 11 iunie 2024

Romanian Mathematics Competitions // Математически състезания от Румъния

 Click on the image to download. The password is   ogeometrie

You can find other RMCs here.

Other Magazines can be found here.


          Example problem : 

                    "The natural numbers $x,\;y,\;z\;$ satisfy the equation

$$4\cdot x+7 \cdot z=7 \cdot y +9.$$

                      a) Show that $x+2\cdot y+3 \cdot z +4\;$ is a multiple of $5$.

                      b) Determine the remainder of dividing $2 \cdot x+y+5 \cdot z$ by $6$."

(The intercounty mathematics and computer science competition "Marian Țarină", 2024 p. 187)

ANSWER CiP

a) $x=7\cdot t +4,\;y-z=4 \cdot t+1,\;\;t\in \mathbb{N};$

                                    b) $3.$


Solution CiP

                    From $4 \cdot x+7 \cdot z=7 \cdot y+9$ we deduce $4 \cdot x-2=7 \cdot y-7 \cdot z+7$ and see that $4 \cdot x-2=7 \cdot a,\;a \in \mathbb{N}^*.$ 

          Expressing the number $x$ we ​​see from the calculation below that the number $a$ must be even, $a=2 \cdot a^{'}$ then that the number $a^{'}$ must be odd, $a^{'}=2 \cdot a^{"}+1$. 

$$x=\frac{7 \cdot a +2}{4}=\frac{7 \cdot 2a^{'}+2}{4}=\frac{7 \cdot a^{'}+1}{2}=\frac{7(2a^{"}+1)+1}{2}=7 \cdot a^{"}+4.$$

We write $a^{"}=t$ and get 

$$x=7 \cdot t+4,\;\;y-z=4 \cdot t +1, \;\;t \in \mathbb{N}.$$

               a) Substituting $z=y-4t-1$ we have

$$x+2y+3z+4=(7t+4)+2y+3(y-4t-1)+4=5y-5t+5,$$

obviously a multiple of $5$.

               b) Substituting $y=z+4t+1$ we have 

$$2x+y+5z=2(7t+4)+(z+4t+1)+5z=6z+18t+9=6 \cdot (z+3t+1)+3,$$

hence the remainder of dividing this number by $6$ is $3$.

$\blacksquare$


luni, 10 iunie 2024

GAZETA MATEMATICĂ Seria B N0 4/2024

              Click on the image. 

               The password to open the File is  ogeometrie  

Other numbers of GMB can be found here.

Sorry, the links are no longer valid


SUPLIMENTUL cu EXERCIȚII al GMB N0 4/2024

          Click on the image. 

           The password to open the File is  ogeometrie  

          Other numbers of SGMB can be found here.


Sorry, the links are no longer valid