Click on the image to download. The password is ogeometrie
You can find other RMCs here.Example problem :
"The natural numbers x,\;y,\;z\; satisfy the equation
4\cdot x+7 \cdot z=7 \cdot y +9.
a) Show that x+2\cdot y+3 \cdot z +4\; is a multiple of 5.
b) Determine the remainder of dividing 2 \cdot x+y+5 \cdot z by 6."
(The intercounty mathematics and computer science competition "Marian Țarină", 2024 p. 187)ANSWER CiP
a) x=7\cdot t +4,\;y-z=4 \cdot t+1,\;\;t\in \mathbb{N};
b) 3.
Solution CiP
From 4 \cdot x+7 \cdot z=7 \cdot y+9 we deduce 4 \cdot x-2=7 \cdot y-7 \cdot z+7 and see that 4 \cdot x-2=7 \cdot a,\;a \in \mathbb{N}^*.
Expressing the number x we see from the calculation below that the number a must be even, a=2 \cdot a^{'} then that the number a^{'} must be odd, a^{'}=2 \cdot a^{"}+1.
x=\frac{7 \cdot a +2}{4}=\frac{7 \cdot 2a^{'}+2}{4}=\frac{7 \cdot a^{'}+1}{2}=\frac{7(2a^{"}+1)+1}{2}=7 \cdot a^{"}+4.
We write a^{"}=t and get
x=7 \cdot t+4,\;\;y-z=4 \cdot t +1, \;\;t \in \mathbb{N}.
a) Substituting z=y-4t-1 we have
x+2y+3z+4=(7t+4)+2y+3(y-4t-1)+4=5y-5t+5,
obviously a multiple of 5.
b) Substituting y=z+4t+1 we have
2x+y+5z=2(7t+4)+(z+4t+1)+5z=6z+18t+9=6 \cdot (z+3t+1)+3,
hence the remainder of dividing this number by 6 is 3.
\blacksquare
Niciun comentariu:
Trimiteți un comentariu