Click on the image to download. The password is ogeometrie
You can find other RMCs here.Example problem :
"The natural numbers $x,\;y,\;z\;$ satisfy the equation
$$4\cdot x+7 \cdot z=7 \cdot y +9.$$
a) Show that $x+2\cdot y+3 \cdot z +4\;$ is a multiple of $5$.
b) Determine the remainder of dividing $2 \cdot x+y+5 \cdot z$ by $6$."
(The intercounty mathematics and computer science competition "Marian Țarină", 2024 p. 187)ANSWER CiP
a) $x=7\cdot t +4,\;y-z=4 \cdot t+1,\;\;t\in \mathbb{N};$
b) $3.$
Solution CiP
From $4 \cdot x+7 \cdot z=7 \cdot y+9$ we deduce $4 \cdot x-2=7 \cdot y-7 \cdot z+7$ and see that $4 \cdot x-2=7 \cdot a,\;a \in \mathbb{N}^*.$
Expressing the number $x$ we see from the calculation below that the number $a$ must be even, $a=2 \cdot a^{'}$ then that the number $a^{'}$ must be odd, $a^{'}=2 \cdot a^{"}+1$.
$$x=\frac{7 \cdot a +2}{4}=\frac{7 \cdot 2a^{'}+2}{4}=\frac{7 \cdot a^{'}+1}{2}=\frac{7(2a^{"}+1)+1}{2}=7 \cdot a^{"}+4.$$
We write $a^{"}=t$ and get
$$x=7 \cdot t+4,\;\;y-z=4 \cdot t +1, \;\;t \in \mathbb{N}.$$
a) Substituting $z=y-4t-1$ we have
$$x+2y+3z+4=(7t+4)+2y+3(y-4t-1)+4=5y-5t+5,$$
obviously a multiple of $5$.
b) Substituting $y=z+4t+1$ we have
$$2x+y+5z=2(7t+4)+(z+4t+1)+5z=6z+18t+9=6 \cdot (z+3t+1)+3,$$
hence the remainder of dividing this number by $6$ is $3$.
$\blacksquare$
Niciun comentariu:
Trimiteți un comentariu