joi, 28 august 2025

Regarding the Problem 16 667

 Here, page 47, the solution was published. I haven't found the Statement yet.

     We select the property in the photo.




 ANSWER CiP

We will show that one of the numbers  $a_k$  is equal to 1, 

and the others are zero. Then  $b=k$.


                              Solution CiP

               We will treat the case  $n=4$  in detail, so for

$a_1,\;\;a_2,\;\;a_3,\;\;a_4\geqslant 0 \tag{1}$

we have equations

\begin{cases}a_1+a_2+a_3+a_4=1\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(2)\\1\cdot a_1+2\cdot a_2+3\cdot a_3+4\cdot a_4=b\;\;\;\;\;\;\;\;\;\;\;\;(3)\\1^2\cdot a_1+2^2\cdot a_2+3^2\cdot a_3+4^2\cdot a_4=b^2\;\;\;\;\;(4)\end{cases}

Subtracting (2) from (3) we have  $b-1=a_2+2\cdot a_3+3\cdot a_4\geqslant 0$,  so  $b\geqslant 1.$

          $\textbf{If}\;\;\bf{b\geqslant 4}$  then 

$b^2-4\cdot b\;\underset{(4)-4\times (3)}{=}(a_1+4a_2+9a_3+16a_4)-4\cdot (a_1+2a_2+3a_3+4a_4)$,  so

$0\leqslant b^2-4b=-3a_1-4a_2-3a_3\overset{(1)}{\leqslant} 0 \tag{5}$

Therefore, in (5) we have everywhere the sign  $"="$. In particular

$b=4,\;\;a_1=a_2=a_3=0,\;\;and\;\;a_4\overset{(2)}{=}1 \tag{6}$

        $\textbf{Let}\;\;\bf{b\in[i,i+1)}$  for some  $i\in\{1,\;2,\;3\}$. We calculate first

$b^2-b\cdot i\;\overset{(4)}{\underset{i\times (3)}{=}}(1a_1+4a_2+9a_3+16a_4)-(i\cdot a_1+2i\cdot a_2+3i\cdot a_3+4i\cdot a_4)$  so

$b^2-bi=(1-i)a_1+2(2-i)a_2+3(3-i)a_3+4(4-i)a_4 \tag{7}$

On the other hand

$b-i\cdot 1\overset{(3)}{\underset{i\times (2)}{=}}(a_1+2a_2+3a_3+4a_4)-(i\cdot a_1+i\cdot a_2+i\cdot a_3+i\cdot a_4)=$

$=(1-i)a_1+(2-i)a_2+(3-i)a_3+(4-i)a_4$

which, multiplied by  $b$  gives us

$b^2-bi=b(1-i)a_1+b(2-i)a_2+b(3-i)a_3+b(4-i)a_4 \tag{8}$

Equating (7) and (8)

$(1-i)a_1+2(2-i)a_2+3(3-i)a_3+4(4-i)a_4=b(1-i)a_1+b(2-i)a_2+b(3-i)a_3+b(4-i)a_4$

we obtain

$(b-1)(i-1)a_1+(b-2)(i-2)a_2+(b-3)(i-3)a_3+(b-4)(i-4)a_4=0 \tag{9}$

               For  $i=1$, (so  $1\leqslant b<2$), the first term cancels out, and all coefficients of   $a_2,\;a_3,\;a_4$  are  $>0$.

Therefore  $a_2=a_3=a_4=0$,  so (cf. (2))  $a_1=1$  and then  $b\overset{(3)}{=}1$.

                For  $i=2$, (so  $2\leqslant b<3$), then the second term cancels out, and all coefficients of  $a_1,\;a_3,\;a_4$  are  $>0$.

Therefore  $a_1=a_3=a_4=0$,  so (cf.(2))  $a_2=1$  and then  $b\overset{(3)}{=}2$.

                For  $i=3$, (so  $3\leqslant b <4$), then the third term cancels out, and all coefficients of  $a_1,\;a_2,\;a_4$  are  $>0$.

Therefore  $a_1=a_2=a_4=0$, so (cf.(2))  $a_3=1$  and then  $b\overset{(3)}{=}3$.

The last three conclusions, together with (6), validate the answer in this particular case.


               The general case extends what is shown in case  $n=4$. So let be the numbers

$a_1,\;a_2,\;\dots,a_n\;\geqslant 0 \tag{11}$

that verify the relations

$$a_1+a_2+\dots+a_n=\sum_{k=1}^na_k=1 \tag{12}$$

$$a_1+2\cdot a_2+\dots+n\cdot a_n=\sum_{k=1}^nk\cdot a_k=b \tag{13}$$

$$a_1+4\cdot a_2+\dots +n^2\cdot a_n=\sum_{k=1}^nk^2\cdot a_k=b^2 \tag{14}$$

We have

$$b-1\overset{(13),(12)}{=}\sum_{k=1}^nk\cdot a_k-\sum_{k=1}^na_k=\sum_{k=1}^n(k-1)\cdot a_k=\sum_{k=2}^n(k-1)a_k\geqslant 0$$

so  $b\geqslant 1$.

          If  $b\geqslant n$  then

$$0\leqslant b^2-n\cdot b\overset{(14),(13)}{=}\sum_{k=1}^nk^2\cdot a_k-n \sum_{k=1}^nk\cdot a_k=\sum_{k=1}^n(k^2-nk)a_k=\sum_{k=1}^{n-1}k(k-n)a_k\leqslant 0$$

and according to (11) it result  $a_1=\dots=a_{n-1}=0,\;b=n,\;a_n\overset{(12)}{=}1$.

          If  $b\in[i,i+1)$  for some  $i\in\{1,\dots,n-1\}$, then, on the one hand

$$b^2-i\cdot b\;\overset{(14),(13)}{=}\sum_{k=1}^nk^2a_k-i\cdot \sum_{k=1}^nka_k=\sum_{k=1}^nk(k-i)a_k \tag{15}$$

On the other hand

$$b-i\;\overset{(13),(12)}{=}\sum_{k=1}^nka_k-i\cdot \sum_{k=1}^na_k=\sum_{k=1}^n(k-i)a_k$$

which, multiplied by  $b$  gives us

$$b^2-ib=\sum_{k=1}^nb(k-i)a_k \tag{16}$$

Equating (15) and (16)  we obtain

$$\sum_{k=1}^n(b-k)(i-k)a_k=0$$

or, excluding the term  $a_i$ wich has coefficient zero

$(b-1)(i-1)a_1+\dots+(b-i+1)a_{i-1}+(b-i-1)(-1)a_{i+1}+\dots (b-n)(i-n)a_n=0$.

Let's analyze the coefficients of the numbers  $a_k$  in the equation above :

          for  $k<i\;\Rightarrow\;(b-k)(i-k)\;\overset{k<i\leqslant b}{>}0;$

          for  $k>i\;\Rightarrow\;(b-k)(i-k)=(k-b)(k-i)\overset{k\geqslant i+1>b}{>}0$

Then it turns out that  $a_1=\dots=a_{i-1}=0=a_{i+1}=\dots =a_n$,  so  $a_i\overset{(12)}{=}1$  and  $b\underset{(13)}{=}i.$

$\blacksquare$

Niciun comentariu:

Trimiteți un comentariu