joi, 9 octombrie 2025

A Problem from the KANGAROO Contest // Un problème du concours KANGOUROU

 KANGAROO is a widely known mathematics competition. Here we discuss a Percentage Problem, taken from Book, which you will soon be able to find scanned here.

                          <<At "Frank Einstein" College, the number of students decreased by

                                 10% in one year, but the percentage of girls increased from 50%

                                  to 55%. The number of girls...

        A. grew up with 0,5%     B. grew up with 1%     C.  remained the same

        D. decreased by  1%     E.  decreased by 0,5%  >>

(1991: Grades 6-7 Problem #29, page 9

 and Grade 8 Problem #22, page 11)


ANSWER CiP  :  D

A complete answer:

 the number of girls decreased by 1% and the number of boys decreased by 19%


                            Solution CiP 

                       Let's denote by  $b,\;f$  respectively the number of boys and girls at the beginning of the year and by $B,\;F$ their number at the end. From the text of the problem it follows that we have the equations:

$B+F=(1-10\text {%}) \cdot (b+f) \tag{1}$

$f=50\text{%} \cdot (b+f) \tag{2}$

$F=55\text{%} \cdot (B+F) \tag{3}$

From (2) we obtain  $f=b$  (which even grandma would have deduced). So from (1) we can write

$B+F=\frac{90}{100} \cdot 2f \tag{4}$

which substituted into (3) gives us

$F=\frac{55}{100} \cdot \frac{90}{100}\cdot 2f=\frac{99}{100} \cdot f=(1-1\text{%}) \cdot f$

So the number of girls decreased by 1%, hence the answer D.

     Further, from  $B+F\overset{(1)}{=}\frac{90}{100} \cdot 2f\;$, replacing  $f$  with  $b$  and  $F$  with  $\frac{99}{100} \cdot b$  we obtain  $B+\frac{99}{100}\cdot b=\frac{90}{100}\cdot b \Rightarrow $

$\Rightarrow B=\left (\frac{180}{100}-\frac{99}{100} \right )=\frac{81}{100}\cdot b=(1-19\text{%})\cdot b$

which completes the answer.

$\blacksquare$


         We are trying to formulate a more general problem :

    The total number of students decreased by  $t \text{%}$  and

 the percentage of girls increased from  $g\text{%}$  to  $h\text{%}$.      

                                      Determine the percentages by which the number of

                                   girls and boys changed.

  

ANSWER CiP (with the previous notations)

$F=\frac{(100-t)\cdot h}{g\cdot 100} \cdot f \tag{F}$

$B=\frac{(100-t)\cdot (100-h)}{(100-g) \cdot 100} \cdot b \tag {B}$

 

                         Solution CiP

          From the problem statement we write the equations :

$B+F=\left (1-\frac{t}{100} \right ) \cdot (b+f) \tag {i}$

$f=\frac{g}{100} \cdot (b+f) \tag{ii}$

$F=\frac{h}{100} \cdot (B+F) \tag{iii}$

Equations (ii) and (iii) lead to the relations :

$(100-g)\cdot f=g \cdot b \tag{b,f}$

$(100-h) \cdot F=h \cdot B \tag{B,F}$

     Substituting  $B\underset{(B,F)}{=}\frac{100-h}{h}\cdot F$  and  $b\underset{(b,f)}{=}\frac{100-g}{g}\cdot f$  in equation (i) we have

$\frac{100-h}{h}\cdot F +F=\frac{100-t}{100}\cdot \left ( \frac{100-g}{g}\cdot f+f\right )\;\Leftrightarrow$

$\Leftrightarrow\;\frac{100}{h}\cdot F=\frac{100-t}{100}\cdot \frac{100}{g} \cdot f\;\Rightarrow\; F=\frac{(100-t)\cdot h}{g\cdot 100} \cdot f$  that is, equation (F).

     Substituting  $F\underset{(B,F)}{=}\frac{h}{100-h}\cdot B$  and  $f\underset{(b,f)}{=}\frac{g}{100-g}\cdot b$  in equation (i) we have

$B+\frac{h}{100-h} \cdot B=\frac{100-t}{100}\cdot \left (b+\frac{g}{100-g}\cdot b\right )\;\Leftrightarrow$

$\Leftrightarrow\;\frac{100}{100-h}\cdot B=\frac{100-t}{100}\cdot \frac{100}{100-g} \cdot b\;\Rightarrow\; B=\frac{(100-t)\cdot (100-h)}{(100-g)\cdot 100} \cdot b$  that is, equation (B).

$\blacksquare \;\blacksquare$


      In the initial problem :  $t=10,\;g=50,\;h=55$  so

$F=\frac{90\cdot 55}{100\cdot 50}\cdot f=\frac{99}{100}\cdot f=(1-1\text{%})\cdot f$,

  $B=\frac{90\cdot 45}{100\cdot 50}\cdot b=\frac{81}{100}\cdot b=(1-19\text{%})\cdot b.$

Other EXAMPLES :

             - If the total number of students decreases by 12% and the number of girls increases from 44% to 50% then

$F=\frac{(100-12)\cdot 50}{44\cdot 100}\cdot f=\frac{88\cdot 50}{44\cdot 100}\cdot f=f$, 

 so the percentage of girls remains the same, and

$B=\frac{(100-12)\cdot (100-50)}{(100-44)\cdot 100}\cdot b=\frac{44}{56}\cdot b\approx 0,79\cdot b=(1-21\text{%})\cdot  b$

so the percentage of boys decreases by about 21%.

             - If the total number of students decrease by  8%  and the number of girls increases from  46% to 54%  then

$F=\frac{(100-8)\cdot 54}{46\cdot 100}\cdot f=\frac{92\cdot 54}{46\cdot 100}\cdot f=\frac{108}{100}\cdot f=(1+8\text{%})\cdot f$

so the percentage of girls increases by  8%.  ATTENTION !! : it is a coincidence that  54%-46%=8%. 

$B=\frac{(100-8)\cdot (100-54)}{(100-46)\cdot 100}\cdot b=\frac{92\cdot 46}{54 \cdot 100}\cdot b=\frac{529}{675}\cdot b\approx 0,78 \cdot b=(1-22\text{%})\cdot b$

so the percentage of boys decreases by about 22%.

             - If the total number of students decrease by  48% (a bit of a bizarre situation)  and the number of girls increases from  52% to 64%  then

$F=\frac{(100-48)\cdot 64}{52\cdot 100}\cdot f=\frac{52\cdot 64}{52\cdot 100}\cdot f=\frac{64}{100}\cdot f=(1-36\text{%})\cdot f$

so the percentage of girls decreases by  36%;

$B=\frac{(100-48)\cdot (100-64)}{(100-52)\cdot 100}\cdot b=\frac{52\cdot 36}{48\cdot 100}\cdot b=\frac{39}{100}\cdot b=(1-61\text{%})\cdot b$

so the percentage of boys decreases by  61%.


              Remarks CiP

            - If the total number of students increases instead of decreasing then we can juggle with negative percentage values, but the formulas remain the same (as in the second example, the number of girls)

            - We have seen in some examples that the answer obtained is only approximate. It would be interesting to study the relationships between the quantities  $t,\; g,\;h\;$ for which the answer is expressed as an integer percentage, i.e. 

$\frac{(100-t)\cdot h}{g}\;\;,\;\;\;\frac{(100-t)\cdot (100-h)}{100-g}$

are integers.

<end Rem>

joi, 2 octombrie 2025

A Paradox of Infinite Long Division // Un paradosso della divisione infinita

 Everything started from the aspects provided in the Post "An easy...".(I still haven't found a simple explanation.)

         I will extract from there the equation 

$26^3-24^3-12^3+1^3=(2^3+1)\cdot 225$

which expresses that  $2025=9\cdot 225$. I'm thinking of seeing what a writing by 225 looks like, which maybe I haven't taken into account yet. I force a division for this,  $26^3-24^3-12^3+1\;:\;(2^3+1)$ , imitating the long division of two polynomials.

\begin{array}{ccccccc}\;\;\;26^3&-24^3&\;&-12^3&+1&\vdash&2^3+1\\-26^3&\;&-13^3&&&&13^3-12^3-\left(\frac{13}{2}\right)^3+\left(\frac{13}{4}\right )^3-\left (\frac{13}{8}\right)^3+\left (\frac{13}{16}\right)^3-\left (\frac{13}{32}\right )^3+\cdots\\\hline \setminus&-24^3&-13^3&-12^3&+1\\\;&24^3&\;&12^3\\\hline \;&\setminus&-13^3&\setminus&+1\\\;&\;&13^3&+\left(\frac{13}{2}\right)^3\\\hline \;&\;&\setminus&\left(\frac{13}{2}\right)^3&\;&+1\\\;&\;&\;&-\left(\frac{13}{2}\right)^3&-\left(\frac{13}{4}\right)^3\\\hline \;&\;&\;&\setminus&-\left(\frac{13}{4}\right)^3&+1\\\;&\;&\;&\;&\left(\frac{13}{4}\right)^3+\left (\frac{13}{8}\right)^3\\\hline \;&\;&\;&\;&\left (\frac{13}{8}\right)^3&+1\\\;&\;&\;&\;&-\left(\frac{13}{8}\right)^3-\left(\frac{13}{16}\right)^3\\\hline \;&\;&\;&\;&-\left(\frac{13}{16}\right)^3&+1\\\;&\;&\;&\;&\left(\frac{13}{16}\right)^3+\left(\frac{13}{32}\right)^3\\\hline \;&\;&\;&\;&\left(\frac{13}{32}\right)^3&\color{Red}{+1}\\\:&\;&\;&\;&\dots&\dots\end{array}

The division can continue indefinitely. The quotient of this division is

$13^3-12^3-\left ( \frac{13}{2}\right )^3+\left ( \frac{13}{4}\right )^3-\left ( \frac{13}{8}\right )^3+\left (\frac{13}{16}\right )^3-\left ( \frac{13}{32}\right )^3+ \cdots=$

$=-12^3+13^3 \cdot \left [1-\left (\frac{1}{2}\right )^3+\left (\frac{1}{2}\right )^6-\left (\frac{1}{2} \right )^9+\left (\frac{1}{2} \right )^{12}-\left (\frac{1}{2} \right)^{15}+\cdots \right ]=$

$=13^3\cdot \frac{1}{1+\frac{1}{8}}-12^3=\frac{8}{9}\cdot 13^3-12^3=\frac{26^3}{9}-12^3.$

We would have expected the result to be 225, so 

$\color{Red}{\frac{26^3}{9}-12^3=225}$

But this is NOT true, and in this I considered, mistakenly, that it was a paradox. We must take into account that for each partial remainder of the division there remains a  $\color{Red}{+1}$. The correct result of the division is

$\color{Blue}{\frac{26^3}{9}-12^3+\frac{1}{9}}$


          I asked ChatGPT what other possibilities there were to write the number 225 as a sum of cubes and he gave me the following reasonable results, but with which I made no progress at all :

$6^3+2^3+1^3$

$7^3-4^3-3^3-3^3$

$7^3-6^3+5^3-3^3$

$7^3-5^3+2^3-1^3$

$8^3-7^3+4^3-2^3$

$9^3-8^3+2^3$

$10^3-7^3-6^3-6^3$