joi, 6 noiembrie 2025

An equation in integers // Een vergelijking in gehele getallen

 Problem  S:E25.260  from the Exercise Supplement  9/2025. In translation :

                  "Find the pairs of integers  $(x,y)$ for which the relation

$x(x+1)=y(y+7) \tag{E}$

                     is verified.

 Liliana NICULESCU, Târgu Mureș"


ANSWER CiP

$(x,y)\in \{(-6,-10),\;(-6,3),\;(-1,-7),\;(-1,0),\;(0,-7),\;(0,0),\;(5,-10),\;(5,3)\}$


Solution CiP

 Equation (E) is written equivalently, successively

$x^2+x=y^2+7y\Leftrightarrow 4x^2+4x+1=4y^2+28y+1\Leftrightarrow (2x+1)^2=(2y+7)^2-48 \Leftrightarrow$

 $\Leftrightarrow (2y-7)^2-(2x+1)^2=48 \Leftrightarrow (2y+7-2x-1)(2y+7+2x+1)=48 \Leftrightarrow$

$\Leftrightarrow 2(y-x+3)\cdot 2(y+x+4)=48 \Leftrightarrow$

$\Leftrightarrow \;\;\;(y-x+3)(y+x+4)=12 \tag{1}$

In integers, for  (1)  we have the possibilities

\begin{array}{c|c|}A=y-x+3&-12&-6&-4&-3&-2&-1&1&2&3&4&6&12\\ \hline B=y+x+4&\underset{[1]}{-1}&\underset{\color{Red}{impossible}}{-2}&\underset{[2]}{-3}&\underset{[3]}{-4}&\underset{\color{Red}{impossible}}{-6}&\underset{[4]}{-12}&\underset{[5]}{12}&\underset{\color{Red}{impossible}}{6}&\underset{[6]}{4}&\underset{[7]}{3}&\underset{\color{Red}{impossible}}{2}&\underset{[8]}{1} \end{array}

But  $A+B=2y+7$  is odd so some cases in the Table are impossible in integers. Only cases [1],...[8] remain.

          [1] \begin{cases}y-x+3=-12\\y+x+4=-1\end{cases} $\Leftrightarrow$ \begin{cases}y-x=-15\\y+x=-5\end{cases}

from where, adding  $2y=-15-5=-20$  means  $y=-10$  and  $x=-5-y=-5+10=5$. We check  (E)  :  $5 \cdot 6=-10 \cdot (-3)$.

[2] \begin{cases}y-x=-7\\y+x=-7\end{cases}

from where  $y=-7,\;x=0$  and  (E) is verified :  $0\cdot 1=-7 \cdot 0$.

[3] \begin{cases}y-x=-6\\y+x=-8\end{cases}

from where  $y=-7,\;x=-1$  and  (E)  is verified :  $-1\cdot 0=-7\cdot 0$.

[4]\begin{cases}y-x=-4\\y+x=-16\end{cases}

from where  $y=-10,\;x=-6$  and  (E)  is verified :  $-6\cdot (-5)=-10\cdot (-3)$.

[5]\begin{cases}y-x=-2\\y+x=8\end{cases}

from where  $y=3,\;x=5$  and  (E)  is verified :  $5\cdot 6=3\cdot 10$.

[6]\begin{cases}y-x=0\\y+x=0\end{cases}

from where  $y=0,\;x=0$  and  (E)  is obvious.

[7]\begin{cases}y-x=1\\y+x=-1\end{cases}

from where  $y=0,\;x=-1$  and  (E)  is obvious.

[8]\begin{cases}y-x=9\\y+x=-3\end{cases}

from where  $y=3,\;x=-6$  and  (E)  is verified : $-6\cdot (-5)=3\cdot 10$.

      I got the answer.

$\blacksquare$