Vezi ERATA
Seeing the post on facebook
https://www.facebook.com/angel.silvapalacios.1/posts/509305606696302
I will write a solution using complex numbers.
At each point $P$ of the plan corresponds a complex number $z_{P}$. In our figure we choose the origin so that $z_{M}=0$, and the real axis BC and let $z_{A}=\alpha$. Since the point $M$ is the middle
of the segment $[BC]$ we can assign $z_{B}=-\beta$, $z_{C}=\beta$. In the given figure we have $\beta =m$. Each vector $\overrightarrow{PQ}$ corresponds to the complex number $z_{Q}-z_{P}$. This correspondence between vectors and complex numbers is a linear application. I will also use the fact that, if the vector $\overrightarrow{PQ}$ rotate anticlockwise around the point $P$ by $\theta$ degrees, obtaining the result $\overrightarrow{PR}$, then
$z_{R}-z_{P}=(z_{Q}-z_{P}) \cdot (\cos \theta + \imath \sin \theta)$, or $=(z_{Q}-z_{P})\cdot \exp(\imath \theta)$.
Because $\overrightarrow{AL}=2\cdot \overrightarrow{LB}$, according to a well-known formula we have
$\overrightarrow{ML}=\frac{\overrightarrow{MA}+2\cdot \overrightarrow{MB}}{1+2}.$
(It is obtained from $\overrightarrow{AL}=2\cdot \overrightarrow{LB} \Leftrightarrow \overrightarrow{ML}- \overrightarrow{MA}=2(\overrightarrow{MB}- \overrightarrow{ML}) \Leftrightarrow (1+2) \overrightarrow{ML}=\overrightarrow{MA}+2\overrightarrow{MB}$, etc.). So to the vector $\overrightarrow{ML}$ corresponds the complex number $\frac{\alpha -2 \beta}{3}$. Ad-hoc we note this by
$\overrightarrow{ML}$ $\mapsto$ $\frac{\alpha-2\beta}{3}.$
In the same way, from $\overrightarrow{AN}=3\cdot \overrightarrow{NC}$ we deduce
$\overrightarrow{MN}=\frac{\overrightarrow{MA}+3\cdot \overrightarrow{MC}}{1+3}$
so
$\overrightarrow{MN}$ $\mapsto$ $\frac{\alpha +3 \beta}{4}$.
But we have that $\overrightarrow{ML}$ is obtained from $\overrightarrow{ML}$ by a $90^{\circ}$ anticlockwise rotation around the point $M$, so
$\frac{\alpha +3\beta}{4}\cdot (\cos 90^{\circ}+\imath \sin 90^{\circ})=\frac{\alpha-2\beta}{3}$
$\Leftrightarrow$ $ \frac{\alpha+3\beta}{4}\cdot \imath=\frac{\alpha-2\beta}{3}$
$\Leftrightarrow$ $3\alpha \imath +9\beta \imath=4\alpha-8\beta$.
We deduce $(4-3\imath)\cdot\alpha=(8+9\imath)\cdot\beta$, $\alpha=\frac{8+9\imath)\cdot \beta}{4-3\imath}=\beta\cdot \frac{(8+9\imath)(4+3\imath)}{16+9}$, so
$(1)$ $\alpha=\frac{1+12\imath}{5}\cdot \beta$, $\beta=\frac{1-12\imath}{29}\cdot\alpha$.
Using (1) for the vectors below we calculate the corresponding complex numbers
$\overrightarrow{AB}$ $\mapsto$ $-\beta-\alpha=-6\beta \frac{1+2\imath}{5}$,
$\overrightarrow{AC}$ $\mapsto$ $\beta-\alpha=4\beta\frac{1-3\imath}{5}$.
By rotating the vector $\overrightarrow{AB}$ with the angle $\theta$, counterclockwise around point $A$ is obtained a vector to which corresponds the complex number z
$(2)$ $-6\beta\cdot \frac{1+2\imath}{5}\cdot(\cos \theta +\imath \sin \theta)$.
At the same time, the result of this operation is a vector collinear with $\overrightarrow{AC}$,
so it is represented in form $\lambda \cdot \overrightarrow{AC}$ (with $\lambda $ -positive real number) and to which corresponds the complex number
$(3)$ $\lambda \cdot 4\beta \cdot \frac{1-3\imath}{5}$.
If we equal the two numbers in (2), (3)
$-6\beta \cdot \frac{1+2\imath}{5}(\cos \theta +\imath \sin \theta)=\lambda \cdot 4\beta\cdot \frac{1-3\imath}{5}$
$\Rightarrow$ $\cos \theta +\imath \sin \theta=-\lambda \frac{2}{3}\cdot \frac{1-3\imath}{1+2\imath}=-\lambda \cdot \frac{2}{3}\cdot \frac{(1-3\imath)(1-2\imath)}{1+4}=-\lambda\cdot \frac{2}{3}\cdot \frac{-5-5\imath}{5}$, so
$(4)$ $\cos \theta+\imath \sin \theta=\lambda \cdot \frac{2}{3}(1+\imath)$.
The number to the left of the equation (4) has module 1 so it has to be $\left | \lambda \cdot \frac{2}{3}(1+\imath)\right |=1$ and we obtain $\lambda =\frac{3}{2\sqrt{2}}$. Then the formula (4) is written
$\cos \theta +\imath \sin \theta=\frac{1}{\sqrt{2}}(1+\imath)$
$\Leftrightarrow$ $\cos \theta +\imath \sin \theta =\cos 45^{\circ}+\imath \sin 45^{\circ}$
whence it results $\theta=45^{\circ}$.
$\blacksquare$
REMARKS
1) At points $L,\;N,\;K$ correspond the complex numbers
$z_{L}=\frac{-3+4\imath}{5}\beta$, $z_{N}=\frac{4+3\imath}{5}\beta$, $z_{K}=\frac{1+7\imath}{5}\beta$
(the latter is obtained by rotating the vector $\overrightarrow{NM}$ by $90^{\circ}$, clockwise, arround point $N$; we obtain for $\overrightarrow{NK}=-\frac{4+3\imath}{5}\beta \cdot (-\imath)$ and $z_{K}=z_{N}+\frac{-3+4\imath}{5}$).
A graphical representation using GeoGebra can be seen in the following figure (I chose $\beta=5$). Note that point $K$ is vertically from $A$ to $BC$.
2) If we do not specify the origin or the real axis then
$z_{A}=\alpha$, $z_{B}=\beta$, $z_{C}=\gamma$
and the calculations would have given $z_{M}=\frac{\beta+\gamma}{2}$
$\overrightarrow{ML}$ $\mapsto$ $\frac{(\alpha-\frac{\beta+\gamma}{2})+2\cdot(\beta-\frac{\beta+\gamma}{2})}{1+2}=\frac{2\alpha+\beta-3\gamma}{6}$
$\overrightarrow{MN}$ $\mapsto$ $\frac{\alpha-\frac{\beta+\gamma}{2}+3\cdot (\gamma-\frac{\beta+\gamma}{2})}{1+3}=\frac{\alpha-2\beta+\gamma}{4}$.
Because the vector $\overrightarrow{ML}$ is obtained by rotating counterclockwise, around the point $M$ of the vector $\overrightarrow{MN}$ by $90^{\circ}$, we have
$\overrightarrow{ML}$ $\mapsto$ $\imath \cdot \frac{\alpha-2\beta+\gamma}{4}$
and from here
$\frac{2\alpha+\beta-3\gamma}{6}=\frac{\alpha\imath-2\beta\imath+\gamma\imath}{4}$
$\Leftrightarrow$ $\alpha \cdot (4-3\imath)=(-2-6\imath)\beta+(6+3\imath)\gamma$
$\Leftrightarrow$ $\alpha=\frac{2-6\imath}{5}\cdot\beta+\frac{3+6\imath}{5}\cdot\gamma$.
Also, because rotating the vector $\overrightarrow{AB}$ with the $\theta$ angle we have a collinear vector with $\overrightarrow{AL}$, we have the equation
$(\beta-\alpha)\cdot (\cos \theta+\imath \sin \theta)=\lambda \cdot (\gamma-\alpha)$ $(\lambda>0)$
so
$\cos \theta+\imath \sin=\lambda \cdot \frac{\gamma-\alpha}{\beta-\alpha}=\lambda \cdot \frac{\frac{2-6\imath}{5}\cdot (\gamma-\beta)}{\frac{3+6\imath}{5}\cdot(\beta-\gamma)}=\lambda \cdot(-\frac{2-6\imath}{3+6\imath})=\frac{30(1+\imath}{45}\cdot \lambda=\frac{2\lambda}{3}(1+\imath)$
and we find equation (4), etc.
In the magazine
in Volume 2 Number 2 (February, 1976) page 25
Solution CiP
The numbers $a,b,c$ can be considered as the roots of a third degree equation
$$x^{3}-px^{2}+qx-r=0.$$
With the numbers $x_{1}=b-c,\;x_{2}=c-a,\;x_{3}=a-b$ we will form a third degree equation that they check. We will first calculate
$$x_{1}+x_{2}+x_{3}=0$$
$$x_{1}\cdot x_{2}+x_{1}\cdot x_{3}+x_{2} \cdot x_{3}=$$
$=(b-c)(c-a)+(c-a)(a-b)+(a-b)(b-c)=bc+ca+ab-a^{2}-b^{2}-c^{2}=$
$$=3\cdot q-p^{2}\overset{\underset{\mathrm{def}}{}}{=}Q$$
the last equality being in accordance with the Vieta's formulas,
$$x_{1} \cdot x_{2} \cdot x_{3}=(b-c)(c-a)(a-b)\overset{\underset{\mathrm{def}}{}}{=}R.$$
Again with the Viète's formulas (for those who prefer the original French name François Viète instead of the Latinised form of his name, "Franciscus Vieta"), the numbers $b-c,\;c-a,\;a-b$ will be the roots of the equation
$$x^{3}-0\cdot x^{2}+Q\cdot x-R=0.$$
But then $\frac{1}{x_{1}},\;\frac{1}{x_{2}},\;\frac{1}{x_{3}}$ will be the roots of the "written backwards" equation
$$R\cdot x^{3}-Q\cdot x^{2}-1=0$$
and the Vieta's formulas give
$\sum_{cycl}\frac{1}{x_{1}} =\frac{Q}{R}$, $\sum_{cycl} \frac{1}{x_{1}}\cdot \frac{1}{x_{2}}=0$.
Now $\frac{1}{(b-c)^{2}}+\frac{1}{(c-a)^{2}}+\frac{1}{(a-b)^{2}}=\sum \frac {1}{x_{1}^{2}}=(\sum \frac {1}{x_{1}})^{2}-2 \cdot \sum \frac {1}{x_{1}\cdot x_{2}}=(\frac{Q}{R})^{2}-2\cdot 0=$
$$=(\sum_{cycl} \frac {1}{b-a})^{2}$$
that is, a square number.
$\blacksquare$