Seeing the post on facebook
https://www.facebook.com/angel.silvapalacios.1/posts/509305606696302
I will write a solution using complex numbers.
At each point $P$ of the plan corresponds a complex number $z_{P}$. In our figure we choose the origin so that $z_{M}=0$, and the real axis BC and let $z_{A}=\alpha$. Since the point $M$ is the middle
of the segment $[BC]$ we can assign $z_{B}=-\beta$, $z_{C}=\beta$. In the given figure we have $\beta =m$. Each vector $\overrightarrow{PQ}$ corresponds to the complex number $z_{Q}-z_{P}$. This correspondence between vectors and complex numbers is a linear application. I will also use the fact that, if the vector $\overrightarrow{PQ}$ rotate anticlockwise around the point $P$ by $\theta$ degrees, obtaining the result $\overrightarrow{PR}$, then
$z_{R}-z_{P}=(z_{Q}-z_{P}) \cdot (\cos \theta + \imath \sin \theta)$, or $=(z_{Q}-z_{P})\cdot \exp(\imath \theta)$.
Because $\overrightarrow{AL}=2\cdot \overrightarrow{LB}$, according to a well-known formula we have
$\overrightarrow{ML}=\frac{\overrightarrow{MA}+2\cdot \overrightarrow{MB}}{1+2}.$
(It is obtained from $\overrightarrow{AL}=2\cdot \overrightarrow{LB} \Leftrightarrow \overrightarrow{ML}- \overrightarrow{MA}=2(\overrightarrow{MB}- \overrightarrow{ML}) \Leftrightarrow (1+2) \overrightarrow{ML}=\overrightarrow{MA}+2\overrightarrow{MB}$, etc.). So to the vector $\overrightarrow{ML}$ corresponds the complex number $\frac{\alpha -2 \beta}{3}$. Ad-hoc we note this by
$\overrightarrow{ML}$ $\mapsto$ $\frac{\alpha-2\beta}{3}.$
In the same way, from $\overrightarrow{AN}=3\cdot \overrightarrow{NC}$ we deduce
$\overrightarrow{MN}=\frac{\overrightarrow{MA}+3\cdot \overrightarrow{MC}}{1+3}$
so
$\overrightarrow{MN}$ $\mapsto$ $\frac{\alpha +3 \beta}{4}$.
But we have that $\overrightarrow{ML}$ is obtained from $\overrightarrow{ML}$ by a $90^{\circ}$ anticlockwise rotation around the point $M$, so
$\frac{\alpha +3\beta}{4}\cdot (\cos 90^{\circ}+\imath \sin 90^{\circ})=\frac{\alpha-2\beta}{3}$
$\Leftrightarrow$ $ \frac{\alpha+3\beta}{4}\cdot \imath=\frac{\alpha-2\beta}{3}$
$\Leftrightarrow$ $3\alpha \imath +9\beta \imath=4\alpha-8\beta$.
We deduce $(4-3\imath)\cdot\alpha=(8+9\imath)\cdot\beta$, $\alpha=\frac{8+9\imath)\cdot \beta}{4-3\imath}=\beta\cdot \frac{(8+9\imath)(4+3\imath)}{16+9}$, so
$(1)$ $\alpha=\frac{1+12\imath}{5}\cdot \beta$, $\beta=\frac{1-12\imath}{29}\cdot\alpha$.
Using (1) for the vectors below we calculate the corresponding complex numbers
$\overrightarrow{AB}$ $\mapsto$ $-\beta-\alpha=-6\beta \frac{1+2\imath}{5}$,
$\overrightarrow{AC}$ $\mapsto$ $\beta-\alpha=4\beta\frac{1-3\imath}{5}$.
By rotating the vector $\overrightarrow{AB}$ with the angle $\theta$, counterclockwise around point $A$ is obtained a vector to which corresponds the complex number z
$(2)$ $-6\beta\cdot \frac{1+2\imath}{5}\cdot(\cos \theta +\imath \sin \theta)$.
At the same time, the result of this operation is a vector collinear with $\overrightarrow{AC}$,
so it is represented in form $\lambda \cdot \overrightarrow{AC}$ (with $\lambda $ -positive real number) and to which corresponds the complex number
$(3)$ $\lambda \cdot 4\beta \cdot \frac{1-3\imath}{5}$.
If we equal the two numbers in (2), (3)
$-6\beta \cdot \frac{1+2\imath}{5}(\cos \theta +\imath \sin \theta)=\lambda \cdot 4\beta\cdot \frac{1-3\imath}{5}$
$\Rightarrow$ $\cos \theta +\imath \sin \theta=-\lambda \frac{2}{3}\cdot \frac{1-3\imath}{1+2\imath}=-\lambda \cdot \frac{2}{3}\cdot \frac{(1-3\imath)(1-2\imath)}{1+4}=-\lambda\cdot \frac{2}{3}\cdot \frac{-5-5\imath}{5}$, so
$(4)$ $\cos \theta+\imath \sin \theta=\lambda \cdot \frac{2}{3}(1+\imath)$.
The number to the left of the equation (4) has module 1 so it has to be $\left | \lambda \cdot \frac{2}{3}(1+\imath)\right |=1$ and we obtain $\lambda =\frac{3}{2\sqrt{2}}$. Then the formula (4) is written
$\cos \theta +\imath \sin \theta=\frac{1}{\sqrt{2}}(1+\imath)$
$\Leftrightarrow$ $\cos \theta +\imath \sin \theta =\cos 45^{\circ}+\imath \sin 45^{\circ}$
whence it results $\theta=45^{\circ}$.
$\blacksquare$
REMARKS
1) At points $L,\;N,\;K$ correspond the complex numbers
$z_{L}=\frac{-3+4\imath}{5}\beta$, $z_{N}=\frac{4+3\imath}{5}\beta$, $z_{K}=\frac{1+7\imath}{5}\beta$
(the latter is obtained by rotating the vector $\overrightarrow{NM}$ by $90^{\circ}$, clockwise, arround point $N$; we obtain for $\overrightarrow{NK}=-\frac{4+3\imath}{5}\beta \cdot (-\imath)$ and $z_{K}=z_{N}+\frac{-3+4\imath}{5}$).
A graphical representation using GeoGebra can be seen in the following figure (I chose $\beta=5$). Note that point $K$ is vertically from $A$ to $BC$.
2) If we do not specify the origin or the real axis then
$z_{A}=\alpha$, $z_{B}=\beta$, $z_{C}=\gamma$
and the calculations would have given $z_{M}=\frac{\beta+\gamma}{2}$
$\overrightarrow{ML}$ $\mapsto$ $\frac{(\alpha-\frac{\beta+\gamma}{2})+2\cdot(\beta-\frac{\beta+\gamma}{2})}{1+2}=\frac{2\alpha+\beta-3\gamma}{6}$
$\overrightarrow{MN}$ $\mapsto$ $\frac{\alpha-\frac{\beta+\gamma}{2}+3\cdot (\gamma-\frac{\beta+\gamma}{2})}{1+3}=\frac{\alpha-2\beta+\gamma}{4}$.
Because the vector $\overrightarrow{ML}$ is obtained by rotating counterclockwise, around the point $M$ of the vector $\overrightarrow{MN}$ by $90^{\circ}$, we have
$\overrightarrow{ML}$ $\mapsto$ $\imath \cdot \frac{\alpha-2\beta+\gamma}{4}$
and from here
$\frac{2\alpha+\beta-3\gamma}{6}=\frac{\alpha\imath-2\beta\imath+\gamma\imath}{4}$
$\Leftrightarrow$ $\alpha \cdot (4-3\imath)=(-2-6\imath)\beta+(6+3\imath)\gamma$
$\Leftrightarrow$ $\alpha=\frac{2-6\imath}{5}\cdot\beta+\frac{3+6\imath}{5}\cdot\gamma$.
Also, because rotating the vector $\overrightarrow{AB}$ with the $\theta$ angle we have a collinear vector with $\overrightarrow{AL}$, we have the equation
$(\beta-\alpha)\cdot (\cos \theta+\imath \sin \theta)=\lambda \cdot (\gamma-\alpha)$ $(\lambda>0)$
so
$\cos \theta+\imath \sin=\lambda \cdot \frac{\gamma-\alpha}{\beta-\alpha}=\lambda \cdot \frac{\frac{2-6\imath}{5}\cdot (\gamma-\beta)}{\frac{3+6\imath}{5}\cdot(\beta-\gamma)}=\lambda \cdot(-\frac{2-6\imath}{3+6\imath})=\frac{30(1+\imath}{45}\cdot \lambda=\frac{2\lambda}{3}(1+\imath)$
and we find equation (4), etc.
Very illustrative. Thank you for teaching us how to apply complex numbers to Euclidean geometry problems.
RăspundețiȘtergereWe have shown the solution in more detail, for those who are not experts in the field.
RăspundețiȘtergereThere are probably still some minor editing errors
ȘtergereThank you for your appreciation
Ștergere