In the magazine
in Volume 2 Number 2 (February, 1976) page 25
Two solutions of the exercise appear in Number 5 (May, 1976 page 95-96)
Solution CiP
The numbers a,b,c can be considered as the roots of a third degree equation
x^{3}-px^{2}+qx-r=0.
With the numbers x_{1}=b-c,\;x_{2}=c-a,\;x_{3}=a-b we will form a third degree equation that they check. We will first calculate
x_{1}+x_{2}+x_{3}=0
x_{1}\cdot x_{2}+x_{1}\cdot x_{3}+x_{2} \cdot x_{3}=
=(b-c)(c-a)+(c-a)(a-b)+(a-b)(b-c)=bc+ca+ab-a^{2}-b^{2}-c^{2}=
=3\cdot q-p^{2}\overset{\underset{\mathrm{def}}{}}{=}Q
the last equality being in accordance with the Vieta's formulas,
x_{1} \cdot x_{2} \cdot x_{3}=(b-c)(c-a)(a-b)\overset{\underset{\mathrm{def}}{}}{=}R.
Again with the Viète's formulas (for those who prefer the original French name François Viète instead of the Latinised form of his name, "Franciscus Vieta"), the numbers b-c,\;c-a,\;a-b will be the roots of the equation
x^{3}-0\cdot x^{2}+Q\cdot x-R=0.
But then \frac{1}{x_{1}},\;\frac{1}{x_{2}},\;\frac{1}{x_{3}} will be the roots of the "written backwards" equation
R\cdot x^{3}-Q\cdot x^{2}-1=0
and the Vieta's formulas give
\sum_{cycl}\frac{1}{x_{1}} =\frac{Q}{R}, \sum_{cycl} \frac{1}{x_{1}}\cdot \frac{1}{x_{2}}=0.
Now \frac{1}{(b-c)^{2}}+\frac{1}{(c-a)^{2}}+\frac{1}{(a-b)^{2}}=\sum \frac {1}{x_{1}^{2}}=(\sum \frac {1}{x_{1}})^{2}-2 \cdot \sum \frac {1}{x_{1}\cdot x_{2}}=(\frac{Q}{R})^{2}-2\cdot 0=
=(\sum_{cycl} \frac {1}{b-a})^{2}
that is, a square number.
\blacksquare
Niciun comentariu:
Trimiteți un comentariu