ANSWER CiP : n=667
Verification: T(667)+3 \cdot 667=6+6+7+3\cdot 667=19+2001=2020
SOLUTION CiP
Let n=\overline{abc}, a\neq 0; the given equation is written
a+b+c+3\cdot (100a+10b+c)=2020
\Leftrightarrow a+b+c+30(10a+b)+3c=2020
where do we get
(1)30\cdot \overline{ab}=2020-a-b-4c.
From equation (1) we see that 30\mid2020-a-b-4c and because a, b, c are digits in base ten, we have a+b+4c\geq 9+9+36=54. Then the right member of (1) is \geq 1966 so its values can only be 2010 or 1980. Also from 1 we get
(2)\overline{ab}=\frac{2020-a-b-4c}{30} .
If a+b+4c=10 then \overline{ab}=\frac{2010}{30}=67 but a=6,b=7 they cannot check the condition a+b+4c=10.
If a+b+4c=40 then \overline{ab}=\frac{1980}{30}=66 so a=6,b=6 and c=\frac{40-6-6}{4}=7 which is the answer.
\blacksquare
===============
Added February 8, 2021
Good answer see V47n01, page 8-9
They write in their solution that T(n)=2020-3n and since for a three-digit number n
1 \leq T(n) \leq27
\Leftrightarrow \; 1 \leq 2020-3n \leq27
.......\Leftrightarrow \;\;665 \leq n \leq 673.
On the other hand n \equiv T(n) \;(mod\;3) and T(n)+3n=2020 \; \Rightarrow
\Rightarrow \;T(n) \equiv 2020\;(mod\;3) \Rightarrow \;T(n) \equiv 1\;(mod\;3)\;\;\Rightarrow \;n \equiv 1 \; (mod\;3)\;....\;\Rightarrow \;3 \mid (n-1).
From the above two observations, we know that, if such n is possible then it must be either 667,\;670 or 673, and we check each possibility ....
= end added=
Niciun comentariu:
Trimiteți un comentariu