We will denote the greatest common divisor of two integers $a$ and $b$ as $gcd(a,b)$. Some authors use $(a,b)$. A definition of $gcd(a,b)$, more generally valid in unitary commutative rings is
$d=gcd(a,b) \Leftrightarrow \begin{cases}d\;\mbox{divides}\;a\;\;and \;\;d\;\mbox{divides}\;b&(i)\\if\;d_{1}\;\mbox{divides} \;a\;and\;d_{1}\;\mbox{divides}\;b\;\;then\;\;d_{1}\;\mbox{divides}\;d&(ii)\end{cases}$
Words $\underline{divides}$ means, in expresions "$d\;divides \;a$" etc, that
"there are an element $x$ in ring $\mathbb{Z}$ such that $d\cdot x=a$" etc.
We will denote "$d\;divides \;a$" by $d\mid a$.
LEMMA If $gcd(c,b)=1$ then $gcd(a,b)=gcd(a\cdot c,b)$
Proof. Let $d=gcd(a,b)$; we have $d\mid a$ so $d \mid a\cdot c$. Thus, first
$d \mid a\cdot c$ and $d \mid b $ (i')
Secondly, let $\delta$ be such that
(1) $\delta \mid a\cdot c$ and $\delta \mid b$.
$gcd(c,b)=1\Rightarrow$ there are integers $u$ and $v$ such that
(2) $c\cdot u+b \cdot v =1$.
From $\delta \mid b \Rightarrow \delta \mid b\cdot v$ $\overset{(2)}{\Rightarrow} \delta \mid 1-c \cdot u \Rightarrow \delta \mid a-a\cdot c \cdot u \overset{(1)}{\Rightarrow} \delta \mid a$.
Thus, (1) $\Rightarrow \delta \mid a$ and $\delta \mid b$ so that , via (ii) from definition,
$\delta \mid d$. Finally
$(1) \Rightarrow \delta \mid d$ (ii')
that means - from (i') and (ii"), $d=gcd(a,b)$.
$\blacksquare$
Remark. Here are another discussion about such phaenomena.
Niciun comentariu:
Trimiteți un comentariu