Processing math: 100%

luni, 7 septembrie 2020

A property of GCD (Greatest Common Divisor)

      We will denote the greatest common divisor of two integers a and b as gcd(a,b). Some authors use (a,b). A definition of gcd(a,b), more generally valid in unitary commutative rings is

 

d=gcd(a,b) \Leftrightarrow \begin{cases}d\;\mbox{divides}\;a\;\;and \;\;d\;\mbox{divides}\;b&(i)\\if\;d_{1}\;\mbox{divides} \;a\;and\;d_{1}\;\mbox{divides}\;b\;\;then\;\;d_{1}\;\mbox{divides}\;d&(ii)\end{cases} 

        Words \underline{divides} means, in expresions "d\;divides \;a" etc, that

"there are an element x in ring \mathbb{Z} such that d\cdot x=a" etc.

We will denote "d\;divides \;a" by d\mid a.

 

     LEMMA If gcd(c,b)=1 then gcd(a,b)=gcd(a\cdot c,b)

 

Proof. Let d=gcd(a,b); we have d\mid a so d \mid a\cdot c. Thus, first

d \mid a\cdot c  and   d \mid b    (i')

Secondly, let \delta be such that

(1)                           \delta \mid a\cdot c  and  \delta \mid b.

gcd(c,b)=1\Rightarrow there are integers u and v such that

(2)                                 c\cdot u+b \cdot v =1.

From \delta \mid b \Rightarrow \delta \mid b\cdot v  \overset{(2)}{\Rightarrow} \delta \mid 1-c \cdot u \Rightarrow \delta \mid a-a\cdot c \cdot u \overset{(1)}{\Rightarrow} \delta \mid a.

     Thus, (1) \Rightarrow \delta \mid a and \delta \mid b so that , via (ii) from definition,

\delta \mid d. Finally

(1) \Rightarrow \delta \mid d  (ii')

that means - from (i') and (ii"), d=gcd(a,b).

 

 

\blacksquare

Remark. Here are another discussion about such phaenomena.


 


 


    

Niciun comentariu:

Trimiteți un comentariu