We will denote the greatest common divisor of two integers a and b as gcd(a,b). Some authors use (a,b). A definition of gcd(a,b), more generally valid in unitary commutative rings is
d=gcd(a,b) \Leftrightarrow \begin{cases}d\;\mbox{divides}\;a\;\;and \;\;d\;\mbox{divides}\;b&(i)\\if\;d_{1}\;\mbox{divides} \;a\;and\;d_{1}\;\mbox{divides}\;b\;\;then\;\;d_{1}\;\mbox{divides}\;d&(ii)\end{cases}
Words \underline{divides} means, in expresions "d\;divides \;a" etc, that
"there are an element x in ring \mathbb{Z} such that d\cdot x=a" etc.
We will denote "d\;divides \;a" by d\mid a.
LEMMA If gcd(c,b)=1 then gcd(a,b)=gcd(a\cdot c,b)
Proof. Let d=gcd(a,b); we have d\mid a so d \mid a\cdot c. Thus, first
d \mid a\cdot c and d \mid b (i')
Secondly, let \delta be such that
(1) \delta \mid a\cdot c and \delta \mid b.
gcd(c,b)=1\Rightarrow there are integers u and v such that
(2) c\cdot u+b \cdot v =1.
From \delta \mid b \Rightarrow \delta \mid b\cdot v \overset{(2)}{\Rightarrow} \delta \mid 1-c \cdot u \Rightarrow \delta \mid a-a\cdot c \cdot u \overset{(1)}{\Rightarrow} \delta \mid a.
Thus, (1) \Rightarrow \delta \mid a and \delta \mid b so that , via (ii) from definition,
\delta \mid d. Finally
(1) \Rightarrow \delta \mid d (ii')
that means - from (i') and (ii"), d=gcd(a,b).
\blacksquare
Remark. Here are another discussion about such phaenomena.
Niciun comentariu:
Trimiteți un comentariu