ANSWER CP : $\underset{\;\;n}max\;d_{n}=197$
More precisely $d_{197\cdot k -100}=197$ , $d_{n}=1\;\;if\;n\neq 197\cdot k-100$
Solution CP
We apply the following properties:
(A) $(a,b)=(a,-b)$;
(B) $(a,b)=(a+b\cdot m,b)=(a,b+a \cdot m)$ , for any integers $m$;
(C) if $(c,b)=1$ then $(a,b)=(a \cdot c,b)$.
Here $(a,b)$ denote "greatest common divisor" for integers $a$ and $b$. See for (C) an ancient post.
Let $d_{n}=(a_{n},a_{n+1})=(n^{2}+2\cdot n+50, (n+1)^{2}+2(n+1)+50)=$
$=(n^{2}+2\cdot n+50,n^{2}+4\cdot n+53)=$
$\overset{(B)}=(n^{2}+2\cdot n+50,n^{2}-4\cdot n+53-(n^{2}+2\cdot n+50))=$
$=(n^{2}+2\cdot n+50,2\cdot n+3)\;\overset{(C)}{=}\underset{(2,2n+3)=1}{=}{=}(2(n^{2}+2n+50),2n+3)=$
$=((2n+3)n+n+100,2n+3)\overset{(B)}{=}(n+100,2n+3)\overset{(B)}{=}(n+100,2n+3-2(n+100))=$
$\overset{(A)}{=}(n+100,197)$.
The number 197 being prime
if $n+100=197\cdot k$ then $d_{n}=197$
and if $n+100=197\cdot k+r$, $r=1, 2, ... ,196$ then $d_{n}=1$.
$\blacksquare$
Examples
$a_{96}=5458=2\cdot 4729;$
$a_{97}=9653=7^{2}\cdot 197$, hence $d_{96}=1$
$a_{98}=9850=2\cdot 5^{2}\cdot 197 $, hence $d_{97}=197$
$a_{99}=10\; 049=13 \cdot 773$, hence $d_{98}=1$
....................................................................................................
$a_{293}=86\;485=5\cdot 7^{2}\cdot 353$
$a_{294}=87\;074=2\cdot 13\cdot17\cdot 197$, hence $d_{293}=1$
$a_{295}=87\;665=5\cdot 89\cdot 197$, hence $d_{294}=197$
$a_{296}=88\;258=2\cdot 44\;129$, hence $d_{295}=1$
Niciun comentariu:
Trimiteți un comentariu