Processing math: 100%

luni, 7 septembrie 2020

Problem MA 82 CRUX MATHEMATICORUM vol 46, no 7 pag 285

 


                    ANSWER CP : \underset{\;\;n}max\;d_{n}=197

 More precisely    d_{197\cdot k -100}=197 , d_{n}=1\;\;if\;n\neq 197\cdot k-100


Solution CP

      We apply the following properties:

(A)       (a,b)=(a,-b);

(B)        (a,b)=(a+b\cdot m,b)=(a,b+a \cdot m) , for any integers m;

(C)        if (c,b)=1 then (a,b)=(a \cdot c,b).

Here (a,b) denote "greatest common divisor" for integers a and b. See for (C) an ancient post.


      Let d_{n}=(a_{n},a_{n+1})=(n^{2}+2\cdot n+50, (n+1)^{2}+2(n+1)+50)=

        =(n^{2}+2\cdot n+50,n^{2}+4\cdot n+53)=

        \overset{(B)}=(n^{2}+2\cdot n+50,n^{2}-4\cdot n+53-(n^{2}+2\cdot n+50))=

     =(n^{2}+2\cdot n+50,2\cdot n+3)\;\overset{(C)}{=}\underset{(2,2n+3)=1}{=}{=}(2(n^{2}+2n+50),2n+3)=

     =((2n+3)n+n+100,2n+3)\overset{(B)}{=}(n+100,2n+3)\overset{(B)}{=}(n+100,2n+3-2(n+100))=

     \overset{(A)}{=}(n+100,197).

The number 197 being prime

             if n+100=197\cdot k then d_{n}=197

             and if n+100=197\cdot k+r, r=1, 2, ... ,196 then d_{n}=1.

\blacksquare


          Examples

     a_{96}=5458=2\cdot 4729;

      a_{97}=9653=7^{2}\cdot 197,    hence d_{96}=1

      a_{98}=9850=2\cdot 5^{2}\cdot 197 ,    hence d_{97}=197

      a_{99}=10\; 049=13 \cdot 773,     hence d_{98}=1

....................................................................................................

      a_{293}=86\;485=5\cdot 7^{2}\cdot 353

      a_{294}=87\;074=2\cdot 13\cdot17\cdot 197,     hence d_{293}=1

      a_{295}=87\;665=5\cdot 89\cdot 197,      hence d_{294}=197

      a_{296}=88\;258=2\cdot 44\;129,       hence d_{295}=1



Niciun comentariu:

Trimiteți un comentariu