ANSWER CP : \underset{\;\;n}max\;d_{n}=197
More precisely d_{197\cdot k -100}=197 , d_{n}=1\;\;if\;n\neq 197\cdot k-100
Solution CP
We apply the following properties:
(A) (a,b)=(a,-b);
(B) (a,b)=(a+b\cdot m,b)=(a,b+a \cdot m) , for any integers m;
(C) if (c,b)=1 then (a,b)=(a \cdot c,b).
Here (a,b) denote "greatest common divisor" for integers a and b. See for (C) an ancient post.
Let d_{n}=(a_{n},a_{n+1})=(n^{2}+2\cdot n+50, (n+1)^{2}+2(n+1)+50)=
=(n^{2}+2\cdot n+50,n^{2}+4\cdot n+53)=
\overset{(B)}=(n^{2}+2\cdot n+50,n^{2}-4\cdot n+53-(n^{2}+2\cdot n+50))=
=(n^{2}+2\cdot n+50,2\cdot n+3)\;\overset{(C)}{=}\underset{(2,2n+3)=1}{=}{=}(2(n^{2}+2n+50),2n+3)=
=((2n+3)n+n+100,2n+3)\overset{(B)}{=}(n+100,2n+3)\overset{(B)}{=}(n+100,2n+3-2(n+100))=
\overset{(A)}{=}(n+100,197).
The number 197 being prime
if n+100=197\cdot k then d_{n}=197
and if n+100=197\cdot k+r, r=1, 2, ... ,196 then d_{n}=1.
\blacksquare
Examples
a_{96}=5458=2\cdot 4729;
a_{97}=9653=7^{2}\cdot 197, hence d_{96}=1
a_{98}=9850=2\cdot 5^{2}\cdot 197 , hence d_{97}=197
a_{99}=10\; 049=13 \cdot 773, hence d_{98}=1
....................................................................................................
a_{293}=86\;485=5\cdot 7^{2}\cdot 353
a_{294}=87\;074=2\cdot 13\cdot17\cdot 197, hence d_{293}=1
a_{295}=87\;665=5\cdot 89\cdot 197, hence d_{294}=197
a_{296}=88\;258=2\cdot 44\;129, hence d_{295}=1
Niciun comentariu:
Trimiteți un comentariu