In Ion CUCUREZEANU - Probleme de Aritmetica si Teoria Numerelor vedem aceasta problema (pag 26):
In Wacław Franciszek Sierpiński -250 Problems in Elementary Number Theory aflam (pag 3):
II. RELATIVELY PRIME NUMBERS
41. Prove that for every integer k the numbers 2k+l and 9k+4 are
relatively prime, and for numbers 2k-l and' 9k+4 find their
greatest common divisor as a function of k.
Problemele au enunturi similare (or fi avand o "sursa" comuna ? sau e "folclor" ?)
Reformulam:
I.127 (i) Demonstrati ca $gcd(3\cdot k+1,14\cdot k+5)=1$;
(ii) Aflati $gcd(3\cdot k-1,14\cdot k+5)$.
II.41 (i) Prove that $gcd(2\cdot k+1,9\cdot k+4)=1$;
(ii) Find $gcd(2\cdot k-1,9\cdot k+4)$.
Vedem ca aceste probleme sunt inrudite cu postarea de aici.
Solutia problemei I.127 arata asa (pag 54):
iar solutia problemei II.41 este (pag 93; n.cip-erata k s; 9 vrea sa zica $k\neq9$):
II. RELATIVELY PRIME NUMBERS
41. Numbers 2k+l and 9k+4 are relatively prime since
9(2k+l)- -2(9k+4) = I. Since 9k+4 = 4(2k-I)+(k+8),
while 2k-1 = 2(k+8)- 17, we have
(9k+4, 2k-l) = (2k-l, k+8) = (k+8, 17). If k = 9 (mod 17),
then (k+8, 17) = 17; in the contrary case, we have 17Ik+8,
hence (k+8, 17) = 1. Thus, (9k+4, 2k-l) = 17 if k = 9 (mod 17)
and (9k+4, 2k-l) = 1 if k ;s 9 (mod 17) .
?! Din nou...asemanari...
Niciun comentariu:
Trimiteți un comentariu