Pag 238 - En
Pag 239 - Fr
ANSWER CiP
If $7 \mid k$ then solutions are $(k,0),\;(k,k),\;(\frac{3k}{7},-\frac{k}{7})$,
and, if any, the pairs $(x_1,y_1),\;(k-x_1+y_1,y_1).$
If $7 \nmid k$ then the solution $(\frac{3k}{7},-\frac{k}{7})$(although rational),
is not made up of integers; the others remain valid.
Examples
If $k=-4$, the equation has solutions
$(-4,0),\;(-4,-4),\;(-1,-3),\;(-6,-3).$
If $k=7$, the equation has solutions
$(7,0),\;(7,7),\;(3,-1),\;(3,6),\;(10,6).$
Solution CiP
There are two pairs $(x,y)$ that obviously check the equation: $(k,0)$ and $(k,k)$.
The given equation is equivalent to
$$x^2-xy+2y^2-kx-ky=0\; ;\; x+y \neq 0. \tag{1} \label{eq1}$$
Let $(x_1,y_1)$ be a solution of equation (1), with the condition $x_1+y_1 \neq 0$. This means that the equation with unknow $x$
$$x^2-(k+y_1)x+2y_1^2-ky_1=0 \tag{2}$$
has the solution $x=x_1$. Being of the second degree for $x$, she has another solution $x_2$ which, according to Viete's Relations, she checks $x_1+x_2=k+y_1$, so $x_2=k-x_1+y_1.$
For the pair $(x_2,y_1)$ to fit the given problem it must be $x_2+y_1 \neq 0$. But $x_2+y_1=0 \; \Leftrightarrow \;k-x_1+2y_1=0 \; \Leftrightarrow \; x_1=k+2y_1$, and writing that $k+2y_1$ check equation (2) we immediately get $y_1=0$, then $x_1=k$.
So for any solution $(x_1,y_1) \neq (k,0)$ of the equation (1) we get another solution by the transformation
$$(x_1,y_1)\; \mapsto \; (k-x_1+y_1,y_1). \tag{3}$$
We have $(k,k) \overset{(3)}{\mapsto} (k-k+k,k)=(k,k)$, so by transforming (3) we do not get a NEW solution. Let's look for all the solutions that remain invariant through this transformation, so $k-x_1+y_1=x_1$, whence $y_1=2x_1-k$. If we write that $(x_1,2x_1-k)$ check equation (1)
$$x_1^2-x_1(2x_1-k)+2(2x_1-k)^2-kx_1-k(2x_1-k)=0$$
$\Leftrightarrow \;7x_1^2-10kx_1+3k^2=0$ we get $x_1=k$ or $x_1=\frac{3k}{7}$. In the secon case $y_1=-\frac{k}{7}$. So the only invariant pairs by transformation (3) are $(k,k)$ and $(\frac{3k}{7}, -\frac{k}{7})$.
So, if $k \;\vdots \; 7$ (means "k is divisible by 7"), then the equation (1) has three solutions $(k,0),\; (k,k),\;(\frac{3k}{7},-\frac{k}{7})$ to which, if there are others $(x_1,y_1)$, an even number of solutions $(x_1,y_1)$ and $(k-x_1+y_1,y_1)$ is added. In total an odd number.
Otherwise ($7 \nmid k$) the solution $(\frac{3k}{7},-\frac{k}{7})$ does not consits of integers, and the number of solutions is even.
$\blacksquare$
Trimitere
Imaginea rezolvarii
Sursa LATEX
Confirmare trimitere
Thank you for sending us your solution for one of the problems found
in Crux Mathematicorum. Our file server has received your submission
and the appropriate editor will be reviewing it in sequence or as
needed.
Below is a receipt confirming the submission you sent us.
Tracking Number: 12749
Received: Wed Jul 7 08:52:45 2021
From: Petre Ciobanu
Scoala Gimnaziala "Samuil Micu" SADU
Sibiu, Romania
Email:
ptr.ciobanu@gmail.com
Type: Solve an Olympiad Corner Problem
(problem OC531)
Files:
LATEX_source_for_PROBLEM_OC_53
1.doc
Problem_OC_531.png
Comments:
I could not get a PDF of this document
Crux Mathematicorum <crux@cms.math.ca> |
| 11:53 (acum 7 ore) |
|
|
|
|