joi, 15 iulie 2021

PROBLEM MA127 CRUX MATHEMATICORUM V47 No 6

 Pag 275 - En


Pag 276 - Fr

ANSWER CiP 

$\log_5 12=\frac{2\cdot a+b}{1-a}$


     Solution CiP

          We have $\log_5 12 =\log_5(2^2 \cdot 3)=\log_5 2^2+\log_5 3$, so

$\log_5 12 =2\cdot \log_5 2 + \log_5 3. \tag{1}$

          First, $\frac{1}{a}=\log_2 10=\log_2 (2\cdot 5)=\log_2 2 +\log_2 5=1+\frac{1}{\log_5 2}$ so

$\frac{1}{\log_5 2}=\frac {1}{a}-1$, whence it results

$\log_5 2 =\frac {a}{1-a}. \tag{2}$

           Secondly, $\frac{1}{b}=\log_3 10 =\log_3 2 +\log_3 5=\frac{\log_{10} 2}{\log_{10} 3}+\frac{1}{\log_5 3}$, so $\frac{1}{\log_5 3}=\frac {1}{b}-\frac {a}{b}$, whence it results

$\log_5 3=\frac{b}{1-a}. \tag{3}$

          Replacing formulas (2) and (3) in formula (1) we get the answer.

$\blacksquare$

          

REMARK CiP

          More briefly $\log_5 12=\frac{\log_{10} 12}{\log_{10} 5}=\frac{\log_{10} 2^2 \cdot 3}{\log_{10} \frac{10}{2}}=\frac{\log_{10} 2^2 +\log_{10} 3}{\log_{10} 10-\log_{10} 2}=\frac{2\cdot \log_{10} 2 +\log_{10} 3}{1-\log_{10} 2}$ and we get the same answer.

$\blacksquare \blacksquare$

 

Confirmare trimitere

 

Thanks for sending your material to Crux!

achitat c-da/Corespondenta CRUX


Thank you for sending us your solution for one of the problems found
in Crux Mathematicorum.  Our file server has received your submission
and the appropriate editor will be reviewing it in sequence or as
needed.


Below is a receipt confirming the submission you sent us.



Tracking Number: 12831
Received:        Thu Jul 15 07:10:34 2021

From:  Petre Ciobanu
       Scoala Gimnaziala "Samuil Micu" SADU
       Sibiu, Romania
Email: ptr.ciobanu@gmail.com

Type:  Solve a MathemAttic Problem
       (problem MA127)

Files:
  LATEX_source_of_MA127.doc
  PROBLEM_MA127_CRUX_v47_n6.pdf


Comments:

Crux Mathematicorum crux@cms.math.ca

10:12 (acum 22 de minute)


către eu


miercuri, 7 iulie 2021

PROBLEM OC531 - CRUX MATHEMATICORUM, V47n5

 Pag 238 - En


Pag 239 - Fr


ANSWER CiP

If $7 \mid k$ then solutions are $(k,0),\;(k,k),\;(\frac{3k}{7},-\frac{k}{7})$,

and, if any, the pairs $(x_1,y_1),\;(k-x_1+y_1,y_1).$

If $7 \nmid k$ then the solution $(\frac{3k}{7},-\frac{k}{7})$(although rational),

 is not made up of integers; the others remain valid.

Examples

 If $k=-4$, the equation has solutions

$(-4,0),\;(-4,-4),\;(-1,-3),\;(-6,-3).$

If $k=7$, the equation has solutions

$(7,0),\;(7,7),\;(3,-1),\;(3,6),\;(10,6).$ 

 

 

Solution CiP

          There are two pairs $(x,y)$ that obviously check the equation: $(k,0)$ and $(k,k)$.

          The given equation is equivalent to

$$x^2-xy+2y^2-kx-ky=0\; ;\; x+y \neq 0. \tag{1} \label{eq1}$$

           Let $(x_1,y_1)$ be a solution of equation (1), with the condition $x_1+y_1 \neq 0$. This means that the equation with unknow $x$

$$x^2-(k+y_1)x+2y_1^2-ky_1=0 \tag{2}$$

has the solution $x=x_1$. Being of the second degree for  $x$, she has another solution $x_2$ which, according to Viete's Relations, she checks $x_1+x_2=k+y_1$, so $x_2=k-x_1+y_1.$

     For the pair $(x_2,y_1)$ to fit the given problem it must be $x_2+y_1 \neq 0$. But $x_2+y_1=0 \; \Leftrightarrow \;k-x_1+2y_1=0 \; \Leftrightarrow \; x_1=k+2y_1$, and writing that $k+2y_1$ check equation (2) we immediately get $y_1=0$, then $x_1=k$.

          So for any solution $(x_1,y_1) \neq (k,0)$ of the equation (1) we get another solution by the transformation

$$(x_1,y_1)\; \mapsto \; (k-x_1+y_1,y_1). \tag{3}$$

       We have $(k,k) \overset{(3)}{\mapsto} (k-k+k,k)=(k,k)$, so by transforming (3) we do not get a NEW solution. Let's look for all the solutions that remain invariant through this transformation, so $k-x_1+y_1=x_1$, whence $y_1=2x_1-k$. If we write that $(x_1,2x_1-k)$ check equation (1)

$$x_1^2-x_1(2x_1-k)+2(2x_1-k)^2-kx_1-k(2x_1-k)=0$$

$\Leftrightarrow \;7x_1^2-10kx_1+3k^2=0$ we get $x_1=k$ or $x_1=\frac{3k}{7}$. In the secon case $y_1=-\frac{k}{7}$. So the only invariant pairs by transformation (3) are $(k,k)$ and $(\frac{3k}{7}, -\frac{k}{7})$.

          So, if $k \;\vdots \; 7$ (means "k is divisible by 7"), then the equation (1) has three solutions $(k,0),\; (k,k),\;(\frac{3k}{7},-\frac{k}{7})$ to which, if there are others $(x_1,y_1)$, an even number of solutions $(x_1,y_1)$ and $(k-x_1+y_1,y_1)$ is added. In total an odd number.

     Otherwise ($7 \nmid k$) the solution $(\frac{3k}{7},-\frac{k}{7})$ does not consits of integers, and the number of solutions is even.

$\blacksquare$


Trimitere

Imaginea rezolvarii

Sursa LATEX





Confirmare trimitere



Thank you for sending us your solution for one of the problems found
in Crux Mathematicorum.  Our file server has received your submission
and the appropriate editor will be reviewing it in sequence or as
needed.


Below is a receipt confirming the submission you sent us.



Tracking Number: 12749
Received:        Wed Jul  7 08:52:45 2021

From:  Petre Ciobanu
       Scoala Gimnaziala "Samuil Micu" SADU
       Sibiu, Romania
Email: ptr.ciobanu@gmail.com

Type:  Solve an Olympiad Corner Problem
       (problem OC531)

Files:
  LATEX_source_for_PROBLEM_OC_531.doc
  Problem_OC_531.png


Comments:
I could not get a PDF of this document

Crux Mathematicorum crux@cms.math.ca

11:53 (acum 7 ore)


către eu