Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js

joi, 2 februarie 2023

ЛЕПА ЈЕДНАЧИНА СА ФУНКЦИЈОМ ПУНИХ ДЕЛОВА

(Sârbă) 

A BEAUTIFUL EQUATION WITH FLOOR FUNCTION

 

               [\alpha] denotes the largest integer less than or equal to \alpha (floor function). An equation that uses all the numbers from 1 to 9, considered by us "beautiful" is

\left [  \frac{2x+1}{3}\right ]+\left [ \frac{4x+5}{6} \right ]=\frac{7x-8}{9}.



ANSWER CiP

x \in \left \{ -\frac{19}{7},\;-\frac{10}{7}\right \}


 Solution CiP


               We use characterization [\alpha] \leqslant \alpha <[\alpha]+1, so
[\alpha]=k\; \Leftrightarrow \;k \in \mathbb{Z}\;and\; k\leqslant \alpha<k+1.

          The left side of the equation is an integer, so we must have \frac{7x-8}{9}=k,\;k\in\mathbb{Z}. Hence
x=\frac{9k+8}{7}.\tag{1}

          Applying the equivalent to the definition inequalities  \alpha-1<k\leqslant \alpha , we have

\frac{2x+1}{3}-1<\left [ \frac{2x+1}{3} \right ] \leqslant \frac{2x+1}{3},\tag{2}

\frac{4x+5}{6}-1<\left [ \frac{4x+5}{6} \right ] \leqslant \frac{4x+5}{6}.\tag{3}

Adding these two relationships and considering the equation, we get

\frac{2x+1}{3}+\frac{4x+5}{6}-2<\frac{7x-8}{9}\leqslant \frac{2x+1}{3}+\frac{4x+5}{6}.

      The first inequality is successively equivalent to

\frac{2x+1}{3}+\frac{4x+5}{6}-\frac{7x-8}{9}<2\;\Leftrightarrow

\Leftrightarrow\;\frac{10x+37}{18}<2\;\Leftrightarrow\;x<-\frac{1}{10}.

The second inequality is successively equivalent to

\frac{2x+1}{3}+\frac{4x+5}{6}-\frac{7x-8}{9}\geqslant 0\;\Leftrightarrow

\Leftrightarrow\;\frac{10x+37}{18}\geqslant 0\;\Leftrightarrow \;x\geqslant -\frac{37}{10}.

     So we have  -\frac{37}{10}\leqslant x <-\frac{1}{10} and considering the form (1) of x:

-\frac{37}{10}\leqslant \frac{9k+8}{7}<-\frac{1}{10}.

Solving these inequalities with the unknown k, we find -\frac{113}{30}\leqslant k<-\frac{29}{30}. But the number k being integer, we can only have k \in \{-3,-2,-1\}, obtaining for x, with the formula (1), respectively

x \in \left \{-\frac{19}{7}, -\frac{10}{7},-\frac{1}{7} \right \}.

      But the value x=-\frac{1}{7} does NOT check the equation (it appeared as a "foreign solution", summing two relations (2) and (3), but which are not independent of each other). We get the answer.

\blacksquare

 

          REMARK CiP

                1^{R}. Noting that for \alpha =\frac{2x+1}{3} we have \alpha +\frac{1}{2}=\frac{4x+5}{6}, the left side of the given equation has the form [\alpha ]+\left [\alpha +\frac{1}{2} \right ]. But we have an identity of Hermite, we can say as beautiful

[\alpha]+\left [ \alpha +\frac{1}{2} \right ]=[2\cdot \alpha].

Then our equation is written equivalently

\left [ 2\cdot \frac{2x+1}{3}\right ]=\frac{7x-8}{9}\;\Leftrightarrow\;\left [ \frac{4x+2}{3} \right ]=\frac{7x-8}{9}

which is a more common type in problem collections.

          Like before x=\frac{9k+8}{7} and now it is enough to set the condition k\leqslant \frac{4x+2}{3}<k+1\;\Leftrightarrow\;3k-2\leqslant 4x<3k+1\;\Leftrightarrow\;3k-2\leqslant \frac{36k+32}{7}<3k+1\;\Leftrightarrow

\Leftrightarrow\;-\frac{46}{15}\leqslant k<-\frac{5}{3}, hence k=-3 or k=-2. We get the answer. The foreign solution stopped appearing.

(End Rem 1.)

                

               2^{R}. Our problem is suggested by Problem 2088 [1995: 307] from the journal CRUX_MATHEMATICORUM. (The notation in right brackets means the year 1995, page 307. More specifically, it is volume 21, number 9, from November 1995, under the heading "PROBLEMS"). I modified, for aesthetic reasons, only the term on the right side of the equation. The solution appeared under the heading SOLUTIONS, in their coding [1996: 334]

(End Rem 2.)

Niciun comentariu:

Trimiteți un comentariu