Loading web-font TeX/Math/Italic

joi, 16 februarie 2023

Solving Pytagorean Equation x^2+y^2=z^2 / حل معادله فیثاغورث

              (Persian) به نشانه تحسین علیرضا صالحی گل سفیدی که کتابش بارها به من روحیه داده است.

                 As a sign of admiration for Alireza Salehi Golsefidy whose book has inspired me many times.


                A Pytagorean_triple consist of three positive integers \;a,\;b\; and \;c,\; such that

a^2+b^2=c^2\;. \tag{P}

          This is how the Wikipedia article about them begins. Being dissatisfied with the way the subject is presented in various works, I will present the version that seemed to me the most correct and complete.

          The presentation from page 29, from this source :

COHEN Henri

Explicit Metods for Solving Diophantine Equations

f.e., f.l., 2006

seemed to me the best.

          

          If the triplet (a,b,c) verifies the equation (P), then the triplets (\pm a,\pm b,\pm c),\; (b,a,c),\;(d\cdot a,d\cdot b,d \cdot c)\;-\;d\in \mathbb{Z}\;- also verifies (P). Our luck is that, if the \mathbf{gcd}(a,b)=1, then \mathbf{gcd}(a,b,c)=1, and converselly. Thus, the general solution in integer numbers of the equation 

x^2+y^2=z^2 \tag{1}

is obtained from all the primitive solutions - that is, those for which \mathbf{gcd}(x,y,z)=1 - by multiplying by an arbitrary integer factor.


          On page 29, loc. cit. we read:

          "Proposition 5.1  The general solution to the equation (1) is given by the

          two disjoint parametrisations

(x,y,z)=(2st,s^2-t^2,\pm(s^2+t^2)) \tag{2}

     and

(x,y,z)=(s^2-t^2,2st,\pm(s^2+t^2)) \tag{3}

          where s and t are two coprime integers of opposite parity."[ and s>0, n.CiP]


     Remark CiP The addition of the right parentheses, made by us, is necessary because the pairs of parameter (s,t) and (-s,-t) give the same result. If we impose in the relations (2) and (3) as s>t>0, then all the solutions in non-zero natural numbers are obtained.



               We show in the table below some positive solutions obtained by formula (2); also, on a red background, solutions that violate the condition of parameters s and t to be of different parities (thus obtaining non-primitive solutions).


             In the proof of the Proposition 5.1, made also in the line of the cited work, we need the following


               LEMMA  Let y and z be two odd integers. Then

(y,z)=\left ( \frac{y+z}{2},\frac{y-z}{2}\right );

                   consequently      (y,z)=1\;\Leftrightarrow\; \left (\frac{y+z}{2},\frac{y-z}{2}\right )=1.

           (Here, (u,v) denotes the greatest common divisor of the numbers u and v.)


                Proof of Lemma  Let d:=(y,z)\;; from Bézout's Lemma there exist integers u and v such that y \cdot u+z \cdot v=d. From here 2d=2yu+2zv=(y+z)\cdot (u+v)+(y-z) \cdot (u-v),

so d=\frac{y+z}{2}\cdot (u+v)+\frac{y-z}{2} \cdot (u-v)and again with Bézout's Lemma, we have

d_1:= \left (\frac{y+z}{2},\frac{y-z}{2} \right )\;\mid \;d. \tag{4}

     Now, from d=(y,z) result y=d \cdot u_1,\;z=d \cdot v_1, with (u_1,v_1)=1. Hence \frac{y \pm z}{2}=d\cdot \frac{u_1 \pm v_1}{2}, so, u_1 and v_1 being odd, \;d\;\mid\;\frac{y \pm z}{2}\; so we must have

d\;\mid \; d_1. \tag{4'}.

Relations (4) and (4') show that d=d_1.

(end of proof Lemma)\square



                   Proof of Proposition 

                   We will look for solutions in positive integers. 

               The x and y cannot both be odd, because then x^2+y^2 has the form 4k+2, which cannot be a perfect square. Then exactly one is odd and the other, say x, is even.

          We rewrite the equation (1) like this: \left ( \frac{x}{2} \right )^2=\underset{q}{\underbrace{\frac{z-y}{2}}} \cdot \underset{p}{\underbrace{\frac{z+y}{2}}}. The y and z being 

coprime, according to the Lemma, q=\frac{z-y}{2} and p=\frac{z+y}{2} are also coprime. Then, in the last equation we must have both \frac{z \pm y}{2} be squares. 
q=\frac{z-y}{2}=t^2\,,\,\;p=\frac{z+y}{2}=s^2 \tag{5} .

The simple observation that y=p-q and z=p+q shows that p,\;q must be of different parities (otherwise y and z would be even); the same are s,\;t.

          From (5) and further from (x/2)^2=p \cdot q results the formulas (2).

\blacksquare

Niciun comentariu:

Trimiteți un comentariu