Click on the image to download.
For a wider collection click here. The password for opening encrypted files is ogeometrie
Click on the image to download.
For a wider collection click here. The password for opening encrypted files is ogeometrie
Click on the image to download.
For a wider collection click here. The password for opening encrypted files is ogeometrie
The problem has been discussed here before.
I showed that $\left \{ cos\frac{\pi}{7},\;-cos\frac{2\pi}{7},\;cos\frac{3\pi}{7} \right \}=\left \{ sin\frac{5\pi}{14},\; -sin \frac{3\pi}{14},\; \sin\frac{\pi}{14} \right \}$
are the roots of the equation $8x^3-4x^2-4x+1=0$ (see Remark 2, relations (5)-(8) ). And identities are expressions of Vieta's relationships for this equation.
For 3.i), let $A=cos\frac{\pi}{7}-cos \frac{2\pi}{7}+cos \frac{3\pi}{7}$.
Let's calculate $2sin\frac{\pi}{7} \cdot A=2sin\frac{\pi}{7}\cdot cos\frac{\pi}{7}-2sin\frac{\pi}{7}\cdot cos \frac{2\pi}{7}+2sin \frac{\pi}{7}\cdot cos \frac{5\pi}{7};$
with the formula of the double angle and the sum product formulas we get
$$2sin\frac{\pi}{7} \cdot A= sin\frac{2\pi}{7}-\left (sin \frac{3\pi}{7}-sin\frac{\pi}{7} \right )+ \left ( sin \frac{4\pi}{7}-sin\frac{2\pi}{7} \right ).$$
But the angles $\frac{4\pi}{7}$ and $\frac{3\pi}{7}$ are supplementary, so $sin \frac{4\pi}{7}=sin\frac{3\pi}{7}$, and we get $2sin\frac{\pi}{7} \cdot A= sin\frac{\pi}{7}$ from which 3.i) results.
For 3.ii), let's note that $\frac{\pi}{2}-\frac{\pi}{7}=\frac{5\pi}{14},\;\frac {\pi}{2}-\frac{2\pi}{7}=\frac{3\pi}{14},\;\frac{\pi}{2}-\frac{3\pi}{7}=\frac{\pi}{14}$
and with the complement formula this is obtained from 3.i).
For 3.iii), let $B=8\cdot cos\frac{\pi}{7}\cdot cos\frac{2\pi}{7} \cdot cos \frac{3\pi}{7}.$
We will calculate $sin\frac{\pi}{7}\cdot B$ applying several times the formula of the double angle and the formulas of the supplements.
$$sin\frac{\pi}{7}\cdot B=4\cdot \left ( 2sin \frac{\pi}{7} \cdot cos\frac{\pi}{7}\right )\cdot cos\frac{2\pi}{7}\cdot cos\frac{3\pi}{7}=4\cdot sin\frac{2\pi}{7}\cdot cos \frac{2\pi}{7} \cdot cos \frac{3\pi}{7}=$$
$$=2\cdot \left ( 2 \cdot sin\frac{2\pi}{7}\cdot cos \frac{2\pi}{7} \right ) \cdot cos \frac{3\pi}{7}=2\cdot sin\frac{4\pi}{7}\cdot cos\frac{3\pi}{7}=2\cdot sin\frac{3\pi}{7}\cdot cos \frac{3\pi}{7}=$$
$$=sin\frac{6\pi}{7}=sin\frac{\pi}{7}$$
hence $B=1.$
Now 3.iv) is obtained from 3.iii) with complement's formulae.
$\blacksquare$
Click on the image to download.
For a wider collection click here. The password for opening encrypted files is ogeometrie
(Daneză)
Euclid showed in Book XIII, Proposition 10 of his Elements that the area of the square on the side of a regular pentagon inscribed in a circle is equal to the sum of the areas of the squares on the sides of the regular hexagon and the regular decagon inscribed in the same circle. In the language of modern trigonometry, this says:
Ptolemy used this proposition to compute some angles in his table of chords in Book I, chapter 11 of Almagest.
Solution 1 CiP
We know the values $$sin 18^\circ=\frac{\sqrt{5}-1}{4},\;sin 30^\circ=\frac{1}{2},\;sin 36^\circ=\frac{\sqrt{10-2\sqrt{5}}}{4}.$$
The calculation is simple: $sin^2 18^\circ +sin^2 30^\circ =\left (\frac{\sqrt{5}-1}{4} \right )^2+\left (\frac{1}{2} \right )^2=\frac{5-2\sqrt{5}+1}{16}+\frac{1}{4}=\frac{6-2\sqrt{5}+4}{16}=\frac{10-2\sqrt{5}}{16}=sin^2 36^\circ .$
$\blacksquare$
Solution 2 CiP
First we show that
$cos 36^\circ -cos 72^\circ=\frac{1}{2}. \tag{1}$
For this, we denote $A:=cos 36^\circ -cos 72^\circ.$ We will calculate, with double-angle formula and product-to-sum identity
$$2sin 36^\circ \cdot A=2sin 36^\circ \cdot cos 36^\circ-2sin 36^\circ \cdot cos 72^\circ=sin (2\cdot 36^\circ)-(sin 108^\circ-sin36^\circ)=$$
$$=(sin 72^\circ-sin 108^\circ)+sin 36^\circ=sin 36^\circ,$$
(because of reflection in $90^\circ$ formulae, $sin108^\circ=sin(180^\circ-108^\circ)=sin 72^\circ)$, hence (1) follow.
Now we calculate with power-reduction formula
$sin^2 36^\circ-sin^2 18^\circ=\frac{1-cos (2\cdot 36^\circ)}{2}-\frac{1-cos(2\cdot 18^\circ)}{2}=\frac{1}{2}(cos 36^\circ-cos 72^\circ)\;\underset{(1)}{==}\;\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4}=sin^2 30^\circ.$
$\blacksquare$
Remark CiP We also know $cos 36^\circ =\frac{\sqrt{5}+1}{4},\;cos 72^\circ =\frac {\sqrt{5}-1}{4}$ and (1) results easier.
<End Rem>
Let $A$ and $B$ be distinct points.
LEMMA The following statements are equivalent:Proof CiP
(i)$\Rightarrow$(iii) As oriented segments, we have $\frac{\overline{XA}}{\overline{XB}}=\kappa\;\Rightarrow\;\overrightarrow{XA}=\kappa \cdot \overrightarrow{XB}\;\Rightarrow$
$$\Rightarrow\;\overrightarrow{OA}-\overrightarrow{OX}=\kappa(\overrightarrow{OB}-\overrightarrow{OX})\;\Rightarrow\;(1-\kappa)\overrightarrow{OX}=\overrightarrow{OA}-\kappa \cdot \overrightarrow{OB}$$
where $O$ is an arbitrary point. We get the conclusion.
(ii)$\Rightarrow$(i) $(1-\kappa)\overrightarrow{OX}=\overrightarrow{OA}-\kappa \cdot \overrightarrow{OB}\;\Rightarrow\;\overrightarrow{OA}-\overrightarrow{OX}=\kappa (\overrightarrow{OB}-\overrightarrow{OX}\;\Rightarrow\;\overrightarrow{XA}=\kappa \cdot \overrightarrow{XB}$
so the vectors $\overrightarrow{XA}$ and $\overrightarrow{XB}$ are collinear and their orientation is according to the sign of $\kappa$, as the figure shows. Hence $\overline {XA}=\kappa \cdot \overline{XB}$.
(iii)$\rightarrow$(ii) obvious.
The Lemma is proved. To prove the corollary we note that
$$\overrightarrow{XA}=\kappa \cdot \overrightarrow{XB}\;\Leftrightarrow\;\overrightarrow{AX}=-\kappa \cdot \overrightarrow{XB}=-\kappa(\overrightarrow{AB}-\overrightarrow{AX})\;\Leftrightarrow \;(1-\kappa)\overrightarrow{AX}=-\kappa \cdot \overrightarrow{AB}$$
hence $r=-\frac{\kappa}{1-\kappa}$.
$\blacksquare \blacksquare$
A young researcher thinks he has made a great discovery. A prestigious journal even published his research. Here are the links to the two articles:
In translation
"S:L23.322. Show that if $\;a,\;b,\;c\in (0,\;\infty)$ and $a+b+c=1$, then
$$\frac{a+1}{\sqrt{a+bc}}\geqslant 2."$$
Solution CiP
We have the known inequality
$\frac{x+y}{\sqrt{xy}}\geqslant 2 \tag{1}$
where $x,\;y$ are positive real numbers. The sign $"="$ occurs in (1) if and only if $x=y.$
(The deduction of (1) is immediate from the equivalents
$$(\sqrt{x}-\sqrt{y})^2 \geqslant 0\;\Leftrightarrow\;x-2\sqrt{x}\cdot \sqrt{y}+y \geqslant 0\;\Leftrightarrow\;x+y\geqslant 2\sqrt{xy}\;\Leftrightarrow\;(1)\;)$$
Back to the problem, it results from the given conditions that $\;a,b,c<1$ (because, for example $a=1-b-c<1-0-0$ and $-b,-c<0$).
Then the numbers $x=1-b$ and $y=1-c$ are positive. But we have
$$a+1=1-b-c+1=(1-b)+(1-c)=x+y$$
and
$$a+bc=1-b-c+bc=(1-b)(1-c)=xy$$
and then the inequality (1) expresses exactly what the statement requires.
$\blacksquare$
Remark CiP The statement does not ask when the $"="$ sign occurs. We will answer, as a bonus.
The sign $"="$ occurs if and only if $(a,b,c)=(1-2t,t,t)$ with $t\in (0, \frac{1}{2}).$
Even the values $t=0$ (when $a=1,\;b=c=0$) and $t=\frac{1}{2}$ (when $a=0,\;b=c=\frac{1}{2}$) are admissible for the statement.
<end Rem>
..................................................................................................................................
As Mr. Konstantine ZELATOR used to us, a problem never appears alone. I am referring to his posts related to problems in the Crux Mathematicorum magazine (although he also has concerns about UFO-logy). As I announced in the title, we will also try to solve the other problems on the photographed page.
" S:L23.321. Let $ABCD$ be the convex quadrilateral whose diagonals
intersect at $O$. If $\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{AO}=\overrightarrow{BC}+\overrightarrow{DC}+\overrightarrow{OC}$, show that $ABCD$
is a parallelogram."
Solution CiP
It seems that no figure would be needed.
I did one, with a trembling hand.The relationship given between the six vectors is written, replacing some of them with the sum of two others, in the form
$(\overrightarrow{AO}+\overrightarrow{OB})+(\overrightarrow{AO}+\overrightarrow{OD})+\overrightarrow{AO}=(\overrightarrow{BO}+\overrightarrow{OC})+(\overrightarrow{DO}+\overrightarrow{OC})+\overrightarrow{OC}\;\Leftrightarrow$
$\Leftrightarrow\;3\overrightarrow{AO}+\overrightarrow{OB}+\overrightarrow{OD}=\overrightarrow{BO}+3\overrightarrow{OC}+\overrightarrow{DO}\;\Leftrightarrow$
$\Leftrightarrow \;3(\overrightarrow{AO}-\overrightarrow{OC})=2\overrightarrow{BO}+2\overrightarrow{DO}\;\Leftrightarrow\;$
$\Leftrightarrow\;3(\overrightarrow{AO}+\overrightarrow{CO})=2(\overrightarrow{BO}+\overrightarrow{DO}).\;\tag{1}$
On the left side of the relation (1) we have a sum of two vectors collinear with $\overrightarrow{AC}$, so the result will also be a vector collinear with $\overrightarrow{AC}$. On the right side of the relation (1) we have a sum of two vectors collinear with $\overrightarrow{BD}$, so the result will also be a vector collinear with $\overrightarrow{BD}$. Thus, equality (1) is possible only if
$$\overrightarrow{AO}+\overrightarrow{CO}=\overrightarrow{0}=\overrightarrow{BO}+\overrightarrow{DO}\;\Leftrightarrow$$
$\Leftrightarrow\;\overrightarrow{AO}=-\overrightarrow{CO}=\overrightarrow{OC}$ and $\overrightarrow{BO}=-\overrightarrow{DO}=\overrightarrow{OD}.$ But this means that point $O$ is both the midpoint of segment $[AC]$ and the midpoint of $[BD]$, thus $ABCD$ is a parallelogram.
$\blacksquare$