joi, 28 august 2025

Regarding the Problem 16 667

 Here, page 47, the solution was published. I haven't found the Statement yet.

     We select the property in the photo.




 ANSWER CiP

We will show that one of the numbers  $a_k$  is equal to 1, 

and the others are zero. Then  $b=k$.


                              Solution CiP

               We will treat the case  $n=4$  in detail, so for

$a_1,\;\;a_2,\;\;a_3,\;\;a_4\geqslant 0 \tag{1}$

we have equations

\begin{cases}a_1+a_2+a_3+a_4=1\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(2)\\1\cdot a_1+2\cdot a_2+3\cdot a_3+4\cdot a_4=b\;\;\;\;\;\;\;\;\;\;\;\;(3)\\1^2\cdot a_1+2^2\cdot a_2+3^2\cdot a_3+4^2\cdot a_4=b^2\;\;\;\;\;(4)\end{cases}

Subtracting (2) from (3) we have  $b-1=a_2+2\cdot a_3+3\cdot a_4\geqslant 0$,  so  $b\geqslant 1.$

          $\textbf{If}\;\;\bf{b\geqslant 4}$  then 

$b^2-4\cdot b\;\underset{(4)-4\times (3)}{=}(a_1+4a_2+9a_3+16a_4)-4\cdot (a_1+2a_2+3a_3+4a_4)$,  so

$0\leqslant b^2-4b=-3a_1-4a_2-3a_3\overset{(1)}{\leqslant} 0 \tag{5}$

Therefore, in (5) we have everywhere the sign  $"="$. In particular

$b=4,\;\;a_1=a_2=a_3=0,\;\;and\;\;a_4\overset{(2)}{=}1 \tag{6}$

        $\textbf{Let}\;\;\bf{b\in[i,i+1)}$  for some  $i\in\{1,\;2,\;3\}$. We calculate first

$b^2-b\cdot i\;\overset{(4)}{\underset{i\times (3)}{=}}(1a_1+4a_2+9a_3+16a_4)-(i\cdot a_1+2i\cdot a_2+3i\cdot a_3+4i\cdot a_4)$  so

$b^2-bi=(1-i)a_1+2(2-i)a_2+3(3-i)a_3+4(4-i)a_4 \tag{7}$

On the other hand

$b-i\cdot 1\overset{(3)}{\underset{i\times (2)}{=}}(a_1+2a_2+3a_3+4a_4)-(i\cdot a_1+i\cdot a_2+i\cdot a_3+i\cdot a_4)=$

$=(1-i)a_1+(2-i)a_2+(3-i)a_3+(4-i)a_4$

which, multiplied by  $b$  gives us

$b^2-bi=b(1-i)a_1+b(2-i)a_2+b(3-i)a_3+b(4-i)a_4 \tag{8}$

Equating (7) and (8)

$(1-i)a_1+2(2-i)a_2+3(3-i)a_3+4(4-i)a_4=b(1-i)a_1+b(2-i)a_2+b(3-i)a_3+b(4-i)a_4$

we obtain

$(b-1)(i-1)a_1+(b-2)(i-2)a_2+(b-3)(i-3)a_3+(b-4)(i-4)a_4=0 \tag{9}$

               For  $i=1$, (so  $1\leqslant b<2$), the first term cancels out, and all coefficients of   $a_2,\;a_3,\;a_4$  are  $>0$.

Therefore  $a_2=a_3=a_4=0$,  so (cf. (2))  $a_1=1$  and then  $b\overset{(3)}{=}1$.

                For  $i=2$, (so  $2\leqslant b<3$), then the second term cancels out, and all coefficients of  $a_1,\;a_3,\;a_4$  are  $>0$.

Therefore  $a_1=a_3=a_4=0$,  so (cf.(2))  $a_2=1$  and then  $b\overset{(3)}{=}2$.

                For  $i=3$, (so  $3\leqslant b <4$), then the third term cancels out, and all coefficients of  $a_1,\;a_2,\;a_4$  are  $>0$.

Therefore  $a_1=a_2=a_4=0$, so (cf.(2))  $a_3=1$  and then  $b\overset{(3)}{=}3$.

The last three conclusions, together with (6), validate the answer in this particular case.


               The general case extends what is shown in case  $n=4$. So let be the numbers

$a_1,\;a_2,\;\dots,a_n\;\geqslant 0 \tag{11}$

that verify the relations

$$a_1+a_2+\dots+a_n=\sum_{k=1}^na_k=1 \tag{12}$$

$$a_1+2\cdot a_2+\dots+n\cdot a_n=\sum_{k=1}^nk\cdot a_k=b \tag{13}$$

$$a_1+4\cdot a_2+\dots +n^2\cdot a_n=\sum_{k=1}^nk^2\cdot a_k=b^2 \tag{14}$$

We have

$$b-1\overset{(13),(12)}{=}\sum_{k=1}^nk\cdot a_k-\sum_{k=1}^na_k=\sum_{k=1}^n(k-1)\cdot a_k=\sum_{k=2}^n(k-1)a_k\geqslant 0$$

so  $b\geqslant 1$.

          If  $b\geqslant n$  then

$$0\leqslant b^2-n\cdot b\overset{(14),(13)}{=}\sum_{k=1}^nk^2\cdot a_k-n \sum_{k=1}^nk\cdot a_k=\sum_{k=1}^n(k^2-nk)a_k=\sum_{k=1}^{n-1}k(k-n)a_k\leqslant 0$$

and according to (11) it result  $a_1=\dots=a_{n-1}=0,\;b=n,\;a_n\overset{(12)}{=}1$.

          If  $b\in[i,i+1)$  for some  $i\in\{1,\dots,n-1\}$, then, on the one hand

$$b^2-i\cdot b\;\overset{(14),(13)}{=}\sum_{k=1}^nk^2a_k-i\cdot \sum_{k=1}^nka_k=\sum_{k=1}^nk(k-i)a_k \tag{15}$$

On the other hand

$$b-i\;\overset{(13),(12)}{=}\sum_{k=1}^nka_k-i\cdot \sum_{k=1}^na_k=\sum_{k=1}^n(k-i)a_k$$

which, multiplied by  $b$  gives us

$$b^2-ib=\sum_{k=1}^nb(k-i)a_k \tag{16}$$

Equating (15) and (16)  we obtain

$$\sum_{k=1}^n(b-k)(i-k)a_k=0$$

or, excluding the term  $a_i$ wich has coefficient zero

$(b-1)(i-1)a_1+\dots+(b-i+1)a_{i-1}+(b-i-1)(-1)a_{i+1}+\dots (b-n)(i-n)a_n=0$.

Let's analyze the coefficients of the numbers  $a_k$  in the equation above :

          for  $k<i\;\Rightarrow\;(b-k)(i-k)\;\overset{k<i\leqslant b}{>}0;$

          for  $k>i\;\Rightarrow\;(b-k)(i-k)=(k-b)(k-i)\overset{k\geqslant i+1>b}{>}0$

Then it turns out that  $a_1=\dots=a_{i-1}=0=a_{i+1}=\dots =a_n$,  so  $a_i\overset{(12)}{=}1$  and  $b\underset{(13)}{=}i.$

$\blacksquare$

luni, 25 august 2025

PLM inseamna o trivialitate.... PLV este prescurtarea oficiala

 Am postat in Aug/01/2024 Decizia de Recalculare a pensiei.

Un comentator anonim, cam sugubat, s-a interesat de Decizia de trecere la Pensia pentru Limita de Varsta. Prescurtat PLV. I-am raspuns ... la fel de trivial. Scuze cititorilor mai sensibili...

Aici sunt cele 3 pagini din Decizie...



Talonul de pensie pe luna AUGUST 2025, insemnat cu compararile din "Marea Recalculare"

Am incasat si niste diferente pntru lunile MAI-JUL, cum se vede mai jos
Voi posta si Talonul pe SEPtembrie, care asa va fi de aici incolo....cat voi trai.

Edit Sep 8, 2025 : Iata Talonul ....final:

A Problem in "GHEBA"

 The author was a celebrity in the second half of the 20th century for his Mathematical Problem Collections for middle school students.

          Ironically, his name has come up in a controversy. See here and here.

          I solved it from his 1973 collection. The 1975 edition, slightly modified, is here. A list of exercises is selected here and here.

          

         I liked the following problem which seems like Elementary Arithmetic :

               "Un obiect se vinde cu 39 lei, castigandu-se atat la suta cat a costat

                 obiectul. Care a fost costul obiectului ?"

In translation : 

"An object is sold for 39 lei, earning a percentage of the cost of the object.

             What was the cost of the object ?"    

              The answer is 30 lei.  That is, an object that costs 30 lei was sold for 30% more. That is, a commercial addition of  $30\cdot \frac{30}{100}=9$ lei. So the selling price is

30 lei  +  9 lei = 39 lei.


          In my personal edition the problem appears on page 136, Problem #5. In the 1975 edition the problem appears on page 201, Problem #5. Among more modern editions, the problem appears on page 192, Problem  #22.


               How can this problem be solved arithmetically ?

I don't know the answer, but I solved it using algebra. In fact, the problem is included in the Chapter on 2nd Grade Equations.

          Solution CiP

          Let  $x$  be the initial price of the object. The object is being sold for  $x\text{%}$  more. The commercial markup is therefore  $x\cdot \frac{x}{100}=\frac{x^2}{100}$. The selling price of the object will be  $x+\frac{x^2}{100}$. 

     So we have the quadratic equation

$x+\frac{x^2}{100}=39$

     In real numbers the equation has two solutions  $x_1=30,\;\;x_2=-130$. Of these, only the first has significance for our problem.

$\blacksquare$

luni, 4 august 2025

A Problem That Has a Chance of Becoming a Theorem // Problema, kuri gali tapti teorema

          I heard the expression in the title from a somewhat megalomaniac fellow mathematician.

          It does, and we will try to prove the following formula :

                    Let be the nonzero numbers  $a_1,\;\dots a_m$. The following equation holds :

$a_1\cdot \left ( \frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+\dots +\frac{1}{a_m}\right )+(a_2-a_1)\cdot \left ( \frac{1}{a_2}+\frac{1}{a_3}+\dots +\frac{1}{a_m}\right )+$

$+(a_3-a_2)\cdot \left (\frac{1}{a_3}+\dots +\frac{1}{a_m}\right )+\dots+(a_{m-1}-a_{m-2})\cdot \left ( \frac{1}{a_{m-1}}+\frac{1}{a_m}\right )+$

$+(a_m-a_{m-1})\cdot \frac{1}{a_m}=m \tag{1}$

I seem to see that a "proof without words" is imminent.