We will solve the following trigonometric equation here :
$$\tan(30^{\circ}-x)\cdot \tan(30^{\circ}+x)=\frac{\tan x}{\sqrt{3}} \tag{1}$$
I first mentioned it in the Post here. There we also showed that the equation (1) is equivalent to the equation
$$t^3-3\sqrt{3}\cdot t^2-3\cdot t+\sqrt{3}=0,\;\;t=\tan x \tag{2}$$
ANSWER CiP
$$x_k^{\circ}=20^{\circ}+k\cdot 60^{\circ},\;\;k\in\mathbb{Z} \tag{3}$$
Solution CiP
The calculation has already been done, but we are presenting it for convenience.
$(1)\overset{t=\tan x}{\Leftrightarrow} t^3-3\sqrt{3}\cdot t^2-3\cdot t+\sqrt{3}=0\Leftrightarrow \sqrt{3}=\frac{3t-t^3}{1-3t^2}\Leftrightarrow$
$\Leftrightarrow \sqrt{3}=\frac{3\cdot \tan x-\tan^3x}{1-3\cdot \tan^2x}\Leftrightarrow \tan 60^{\circ}=\tan 3x\Leftrightarrow 3x=60^{\circ}+k\cdot 180^{\circ},\;\;k\in \mathbb{Z}$
From here we get the answer (3)
$\blacksquare$
Remark CiP It all started with solving the first equation from No. 6 on Page here. Now, after we have solved the equation (1) (see also the Post from September 3, 2025), we can write the identities :
$$\frac{\tan10^{\circ}\cdot \tan50^{\circ}}{\tan20^{\circ}}=\frac{1}{\sqrt{3}}\tag{4}$$
$$\frac{\tan10^{\circ}\cdot \tan70^{\circ}}{\tan40^{\circ}}=\frac{1}{\sqrt{3}}\tag{5}$$
$$\frac{\tan50^{\circ}\cdot \tan70^{\circ}}{\tan80^{\circ}}=\frac{1}{\sqrt{3}}\tag{6}$$
But (4), considering that $\frac{1}{\tan20^{\circ}}=\cot20^{\circ}$, is exactly the first identity from No. 6. Seeking to express all quantities as tangents of angles not exceeding $45^{\circ}$, we further have $\frac{\tan10^{\circ}\cdot \tan50^{\circ}}{\tan20^{\circ}}=\frac{\tan10^{\circ} \cdot \color{Red}{\cot40^{\circ}}}{\tan20^{\circ}}=\frac{\tan10^{\circ}\cdot \color{Red}{\frac{1}{\tan40^{\circ}}}}{\tan20^{\circ}}=\frac{\tan10^{\circ}}{\tan20^{\circ}\cdot \tan40^{\circ}}=\frac{1}{\sqrt{3}}$
which is the second entity from the aforementioned No. 6.
Doing the same thing with (5) :
$\frac{1}{\sqrt{3}}=\frac{\tan10^{\circ}\cdot \color{Red}{\cot20^{\circ}}}{\tan40^{\circ}}=\frac{\tan10^{\circ}\cdot \color{Red}{\frac{1}{\tan20^{\circ}}}}{\tan40^{\circ}}=\frac{\tan10^{\circ}}{\tan20^{\circ}\cdot \tan{40^{\circ}}}$
and with (6) :
$\frac{1}{\sqrt{3}}=\frac{\color{Red}{\cot40^{\circ}\cdot \cot20^{\circ}}}{\color{Red}{\cot10^{\circ}}}=\frac{\frac{1}{\tan40^{\circ}}\cdot \frac{1}{\tan20^{\circ}}}{\frac{1}{\tan10^{\circ}}}=\frac{\tan10^{\circ}}{\tan20^{\circ}\cdot \tan40^{\circ}}$
So the second of the identities in No. 6 is the most important.
Let's demonstrate it directly then. We will see that the pattern is the same.
$\frac{\tan10^{\circ}}{\tan20^{\circ}\cdot \tan40^{\circ}}=\frac{\frac{\sin10^{\circ}}{\cos10^{\circ}}}{\frac{\sin20^{\circ}}{\cos20^{\circ}}\cdot \frac{\sin40^{\circ}}{\cos40^{\circ}}}=\frac{8\cdot \sin10^{\circ}\cdot \cos20^{\circ}\cdot \cos40^{\circ}}{8\cdot \cos10^{\circ}\cdot \sin20^{\circ}\cdot \sin40^{\circ}}\tag{7}$
The numerator in (7) is $4\cdot \frac{\sin20^{\circ}}{\cos10^{\circ}}\cdot \cos20^{\circ}\cdot \cos40^{\circ}=\frac{1}{\cos10^{\circ}}\cdot 2\cdot \sin40^{\circ}\cdot \cos40^{\circ}=\frac{1}{\cos10^{\circ}}\cdot \sin80^{\circ}=1$
The denominator in (7) is $4\cdot \cos10^{\circ}\cdot(\cos20^{\circ}-\cos60^{\circ})=4\cos10^{\circ}\cdot \cos20^{\circ}-4\cos10^{\circ}\cdot \frac{1}{2}=$
$=2(\cos10^{\circ}+\cos30^{\circ})-2\cos10^{\circ}=2\cos10^{\circ}+2\cdot \frac{\sqrt{3}}{2}-2\cos10^{\circ}=\sqrt{3}$
So the final value in (7) is $\frac{1}{\sqrt{3}}$.
<end Rem>
Niciun comentariu:
Trimiteți un comentariu